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Reliability Model Generator

I. SUMMARY

This report describes the Reliability Model Generator,

an analysis tool that produces a reliability model of a can-

didate system from a structural and functional system confi-

guration. This work has been supported under NASA contract

NASI-10899, Integrated Airframe/Propulsion Control System

Architecture (IAPSA II) .

This report begins with a brief account of motivation

for the tool. This is followed by a description of the

tool, detailing the algorithms for each process. Changes to

the algorithms since September 1987 are itemized in appendix

A. The algorithms themselves are listed in appendix B. Two

example traces of the algorithms are listed in appendices C

and D.

Currently, a prototype system for the Reliability Model

Generator is under development. The resilience of the pro-

totype will be tested on the candidate architecture being

designed

tightly

Advanced

for the IAPSA II contract, which is based on the

synchronized fault-tolerant architecture, the

Information Processing System (AIPS), developed by



The Charles Stark Draper Lab.



2. INTRODUCTION

The use of digital systems and redundancy management

schemes to satisfy flight control system requirements of

high-performance aircraft has increased both the number of

implementation alternatives and the overall system design

complexity. Consequently, a comprehensive reliability

analysis of each candidate architecture becomes tedious,

time consuming, and costly. Evaluation tools do exist that

will aid in this analysis process. Given system reliability

models (e.g., fault trees, Markov models), these tools will

quantify system attributes (i.e., mean time between failures

and critical component failure vulnerabilities, etc.) for

mission safety, mission success, or for other reliability

attributes as deemed necessary.

In order to define the reliability model that serves as

input to the evaluation tools, a failure modes effects

analysis (FMEA) of the candidate system must be performed

manually to determine the effects of component failures on

the system. For advanced avionics systems incorporating

complex redundancy management schemes, this can involve

exploration of system component interrelationships approach-

ing combinatorial explosion. Because of this complexity, an

analysis tool called the Reliability Model Generator is pro-

posed that will incorporate failure analysis techniques to

generate the reliability model from a functional and struc-

tural description of a candidate architecture. This relia-

bility model can then be used by an existing evaluation tool



that solves the model and defines the numeric bounds on sys-

tem reliability. Figure 1 shows this process.

This report begins, in section 2, with a discussion of

reliability analysis techniques used for the IAPSA II pro-

ject and other attributes of reliability analysis that shape

the environment for the Reliability Model Generator which is

then described in section 3. Finally, future developmental

efforts and enhancements are discussed in section 4.

3. RELIABILITY ANALYSIS

Reliability analysis can be defined as the analysis of

events that contribute to the occurrence of undesirable con-

ditions, and the application of probability theory to deter-

mine that the likelihood of these undesirable conditions

lies within acceptable limits. Undesirable conditions are

defined as a nonfulfillment of the system requirements being

supported by a candidate architecture (e.g., loss of criti-

cal flight control functions). Furthermore, these conditions

are a manifestation of component failures propagated through

the interrelationship between system components. Therefore,

to determine the sequence of component failures that contri-

butes to a particular undesirable condition, an FMEA is per-

formed that traces the effects of component failures accord-

ing to component interactions. For highly reliable systems,

additional functions are incorporated into the architecture

for failure detection, isolation, and recovery (FDIR) . FMEA

must also identify these FDIR mechanisms and analyze their
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effects on overall system reliability. Another critical

aspect of FMEA is concerned with the effects of multiple

failures on the system and the effects of nearly simultane-

ous failures - a particular state of vulnerability in which

a second failure may occur before the system can recover

from the first failure. These time dependencies contribute

to the difficulty of an accurate reliability analysis.

Once an analysis of critical failure modes is complete,

a reliability model incorporating these characteristics is

defined. The reliability model is then solved by an evalua-

tion tool. The evaluation tool used in IAPSA II is the

Semi-Markov Unreliability Range Evaluator (SURE), developed

by NASA Langley. A system in SURE is defined as a state

space description: the set of all feasible states of the

system, given an initial state. State transitions, in SURE,

describe the occurrence of faults and fault recovery actions

that cause the system to change from one state to another.

Given the state space description, including an identifica-

tion of the initial state and those states that represent

an unreliable system, SURE computes the upper and lower

bounds on system reliability and provides an enumeration of

all system failures. The sequence of component failures that

contributed to each system failure is also identified.

An interface to SURE is provided by the Abstract Semi-

Markov Specification Interface to the SURE Tool (ASSIST), a

tool to aid in the specification of the reliability model.

Input to ASSIST comprises a state space vector representing



the attributes of the system. The failure modes and FDIR

attributes are described to ASSIST as transitions in the

form of logical statements. Each transition describes (in

terms of the state space vector elements) a logical condi-

tion under which a change to the system occurs. The

undesirable conditions, called death states, are identified

by logical relationships among the state vector elements.

From this specification, the SURE model is generated and

solved. An example of an ASSIST description is shown in

figure 2.

Despite the user-friendly front-end to SURE provided by

ASSIST, modeling expertise is needed to efficiently describe

the reliability attributes in terms of a state space vector,

death conditions, and transitions. In addition, for large

system incorporating many components, the SURE state space

for the system may culminate in an explosion of states that

will require excessive computing resources to solve and

inhibit validation of the model.

The Reliability Model Generator aids in analyzing the

effects of component failures on other components in the

system and outputs a reliability model in ASSIST syntax.

The reliability model then can be examined by the user or

inputed to ASSIST and SURE to compute the reliability

metrics.

In addition to the mechanics of reliability analysis,

several environmental attributes merit consideration.



SPACE

START

DEATHIF

= ( NGFTPI: 0. i,

NPARII: 0. I,

NGFTP2: 0. I,

NPARI2: 0. i,

NPAR22: 0. I,

NGFTP3: 0. i,

NPARI3: 0. I,

NPAR23: 0..1,

NGFTP4: 0..1,

NPAR24: 0..i);

(* FTP CHANNEL STATUS *)

(* PARTITION INTERFACE STATUS *)

(* FTP CHANNEL STATUS ")

(* PARTITION INTERFACE STATUS *)

(_ PARTITION INTERFACE STATUS *)

(* FTP CHANNEL STATUS *)

(* PARTITION INTERFACE STATUS *)

(* PARTITION INTERFACE STATUS *)

(* FTP CHANNEL STATUS *)

(* PARTITION INTERFACE STATUS _)

= ( i,i, i,i,i, 1,i,1, I,i );

NGFTPI + NGFTP2 + NGFTP3 + NGFTP4 < 2

OR NPARII + NPARI2 + NPARI3 {'' SINGLE PARTITION SUCCESS CASE **)

* NPAR22 + NPAR23 + NPAR24 < I; ('* SINGLE PARTITION SUCCESS 4,)

LAMFTP = 220.0E-6;

L_-ICOM = 40.0E-6;

(* FTP CHANNEL FAILURE RATE *)

(* ---INCLUDES CENTRAL POWER SOURCE--- *)

(* FTP NETWORK INTERFACE FAILURE RATE *)

(* ---INCLUDES ROOT NODE--- *)

IF NGFTPI > 0 T_NTC NGFTPI = 0, NPARII = 0

BY LAMFTP;

IF NGFTP2 > O TP_NTO NGFTP2 = 0, NPARI2 = 0,

NPAK22 = 0

BY LAMFTP;

IF NGFTP3 > 0 TRANTO NGFTP3 = 0, NPARI3 = 0,

NPAK23 = 0

BY LAMFTP;

IF NGFTP4 > 0 TRANTO NGFTP4 = 0, NPAR24 = 0

BY L_-IFTP;

IF NPAPII > 0 TRANTO NPARII = 0 BY LAMCOM:

IF N.:ARI2 > 0 TRANTO NPARI2 = O 8Y L._-MCOM;

IF N_ARI3 > 0 TRANTC NPARI3 = 0 RY LAMCOM;

IF NPAR22 > 0 TRAHTC NPAR22 = 0 BY LAMCOM;

IF NPAR23 > 0 TRANTC NPAR2_ = 0 BY LAMCOM;

IF NFAR24 > 0 TRANTO NPAK24 = 0 BY LAMCOM;

Figure 2. Manually generated ASSIST Reliability Model



Reliability analysis is performed at all phases of the

design process. Consequently, models are often built incre-

mentally, starting with limited or cursory knowledge of

basic functions and critical failure modes, adding func-

tional information and failure modes as implementation

details become available.

At any phase of the analysis, basic units of the archi-

tecture are identified, and failure modes postulated for

them. These units may correspond to a physical hardware

device or may refer to assemblies of units for which compo-

site failure modes are identified. The units have been

referred to in literature by various nomenclature including

systems and subsystems, elements and subelements, modules

and submodules, assemblies and subassemblies, components and

subcomponents, structures and substructures, parts, etc.

For this discussion, each basic unit of the architecture

will be defined as a component. Components may consist of

subcomponents, which themselves may be made up of other sub-

components. At some level of analysis, there is an identif-

ication of the highest level component and the lowest level

subcomponents, and some multilevel hierarchy of subcomponent

definition in between.

Failure modes are identified with the lowest level com-

ponents. At any level of design being analyzed, assumptions

are made concerning the level of specification below this

level. For example, a multiprocessor system may define each

processor as the lowest level component of the system with a
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single failure mode.

Analysis at this level makes assumptions about the

operation of the subcomponents of each processor. It

assumes that no other failures of the processor can be mani-

fested through interaction among a processor's subcom-

ponents. In theory, the more detailed the level of

analysis, the more confidence the analyst has in the

results. However, as the analysis includes more and more

components at increasing levels of detail, the interactions

among components through which failures are manifested

becomes too numerous to easily analyze.

To manage the analysis complexity, a system may be

divided into sets of components. The components in each set

are analyzed separately at a detailed level (i.e., several

levels of subcomponents), from which critical failure modes

are ascertained. Failure modes of subcomponents are com-

bined according to their severity and effects on a higher

level component. These failure modes are used to define a

model of the component at the higher level. This component

then becomes a lowest level component in a new aggregate

model (that also accounts for dependencies among the sets).

Such incremental analysis allows detailed analysis without

an explosion of states. However, care must be taken in this

abstraction technique to ensure that an analyst does not

overlook failure mode combinations within and between com-

ponent sets that have a more severe effect on the system

than identified. The credibility of the resulting



reliability analysis is only as good as the validity of the

assumptions made in the analysis. All assumptions must,

therefore, be well understood.

o

This section describes

reliability model generator.

two knowledge bases:

RELIABILITY MODEL GENERATOR

the salient features of the

The overview in figure 3 shows

Building Blocks Definition (BBD)

System Definition (SYSD)

and the following software modules:

Model Builder, which is composed of:

I. Reliability Model Aggregation System (RMAS)

2. Local Model Generator (LMG)

Model Reducer/Encoder

Markov Reliability Analysis tool (SURE)

The BBD and

the functional and

system, respectively,

for the

components

designed.

describes its behavior

components.

from which a candidate

Each component has

independent

SYSD provide a specification of

structural characteristics of the

and identify the failure modes

The BBD represents the set of

configuration may be

a specific model that

of any configuration.

ii





Once the building block components have been defined in the

BBD, the analyst defines a candidate configuration or SYSD.

Each component in the SYSD is an instantiation of a

component defined in the BBD. The SYSD defines the

connections between

distinction between

the next sections.

the component instantiations. The

the SYSD and BBD will be exemplified in

Based on the functional behavior and structural

description provided by the BBD and SYSD, respectively, and

given a global failure condition to analyze, the Model

Builder defines a reliability model for the failure

condition. The Model Builder (see figure 4) consists of two

complementary tools - the Local Model Generator (LMG) and

the Reliability Model Aggregation System (RMAS) which may be

used separately or in conjunction. The Local Model Genera-

tor traces the effects of lowest level component failure

modes on other components in the system by following the

functional description of the components (defined in the

BBD/SYSD) . For each of the lowest level components, the

Local Model Generator defines a local reliability model.

Each local reliability model defines for the component all

output effects as a function of the states of the component

(i.e. failure modes) and the characteristics of the input to

that component (e.g. corrupted and non-corrupted inputs).

Component functions, failure modes, and local reliability

models will be described further in section 3.1.2.

13
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L_ocalfujnctions _ ! Local

M-I modelLR generator

User
interface

i ] SYSD !-_J LRM Reliabilitymodel

L.___.j Aggregation
System

Key: LRM = Local reliability model

Figure 4. RMAS and LMG

,, Existing Tool

@"
i Reliability

evaluaUon
tool
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RMAS uses the local reliability models (created by the

LMG or entered directly by the user) and knowledge of the

interrelationship between components (provided by the BBD

and SYSD) to aggregate the local reliability models into a

global reliability model for the system. Thus, the Local

Model Generator and the Reliability Model Aggregation System

together define a model of the system that maps the lowest

level failure modes into the highest level unreliable condi-

tion.

Once a global reliability model is defined,

reduction techniques are applied by the

Keducer/Encoder to reduce the model state space and

further

Model

encode

the global model into ASSIST syntax from which the SURE

model is built. The model is then solved by SURE.

4.1. BUILDING BLOCKS DEFINITION

The BBD represents the set of components from which

a candidate architecture may be configured. Each component

of the BBD has a specific representation describing its

behavior independent of any configuration. The

representations define, for each component, its functions,

the ways in which the component may fail, and the probabil-

ity associated with that failure.

BBD components are defined hierarchically, with each

level corresponding to a different view of the component.

At the top level, a component is defined most

erally, and at the lowest level, in the most detail.

gen -

15



Figure 5 illustrates how a computer system might be

modeled in the BBD. An interactive user interface allows

the user to specify the building blocks graphically as

shown on the left in figure 5. This is then mapped into a

BBD organized as a hierarchy of components as shown on the

right in figure 5. At the highest level, the system is

represented by two types of components, the computer and

the I/O devices. Only the interrelationship between the

computer and the I/O devices is defined. Therefore, the

computer is represented as a "box" whose function is

to receive information from and output information to I/O

devices. To specify the internal function of the computer

at the next level in the hierarchy (i.e., the computer's

BBD component), the BBD identifies two subcomponents, CPU

and memory, and defines their interrelationship within the

computer. The third level defines the function of the

CPU and the memory elements. Subcomponents of the CPU (i.e.,

the registers and the ALU) are identified and their

interrelationship defined. This hierarchical definition

may continue to the most detailed level necessary (e.g.,

gates or transistors).

The hierarchical definition of components in the BBD

corresponds to the way systems are normally

characterized--subdividing complex systems into simpler

ones. It also allows for flexibility in analyzing systems

at all levels of design, thus supporting the iterative

nature of reliability analysis portrayed in the

16
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preceding section. At early stages of design when few

implementation decisions are known, a high-level view of the

system may be defined

modes performed based

discussed in the next

details are known and

analysis, subcomponents

functional description,

at a more detailed level.

trated, this top-down

and analysis of

on this model.

section.) When

needed in

are defined

and failure

As will

structuring

tional requirements also allows the

role that a lower level component

unreliable condition.

critical failure

(Failure modes are

further design

the reliability

to expand the

modes are modeled

be further illus-

of component func-

tool to trace the

plays in a top-level

4.1.1. TOP AND INTERMEDIATE LEVEL BBD SPECIFICATION

The highest and intermediate level BBD component

descriptions define the function for that level by identi-

fying the subcomponents involved in that function and

describing the way in which the subcomponents interact.

The functional flow between subcomponents is defined

using the ";" symbol to indicate sequence and the "@" symbol

to indicate parallelism. Parallelism amoung redundant com-

ponents may also be specified by using the FA (for all)

universal quantifier. Each subcomponent is identified in

the functional flow by its name, and following the name is a

specification of its inputs and outputs (separated by a

"::") . The function performed by each subcomponent is not

18



specified in the BBD for component A, but rather is speci-

fied in a separate BBD component module for each subcom-

ponent at the next lower level in the BBD hierarchy.

Figure 6a shows a block diagram of a simple system and

figure 6b shows an example of the BBD specification for com-

ponent A. Component A is composed of three subcomponents,

B, C, and D. Subcomponents B and C execute in parallel on

inputs x and y, respectively. The outputs from B and C (q

and r, respectively) are sent to subcomponent D which out-

puts the final value, z.

The current prototype under development uses a graphi-

cal interface to create components and subcomponents in the

BBD and to specify the functional flow between subcomponents

within a parent component. With this interface, the user

need only connect lines between components on a screen (as

in figure 6a), and the system creates the internal specifi-

cation shown in figure 6b. The user may also modify the

internal representation.

4.1.2. LOWEST LEVEL COMPONENT BBD SPECIFICATION

The lowest level component description defines the com-

ponent function and any failure modes that are to be

analyzed.

Before defining the functional specification for the

lowest level components, however, it is necessary to intro-

duce the concept of input and output characteristics which

19
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A

B

C

q

(b) A • • @ ( B • • input x; output q;
C • "input y; output r;);
D • • input q, r; output z;

Figure 6. Intermediate Level Function Specification
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is a central theme in the Model Builder processes.

4.1.2.1. INPUT/OUTPUT CHARACTERISTICS

Input/output characteristics are used to represent the

effects of component failure modes on information flowing to

other components in the system. The motivation for the

introduction of input and output characteristics is this: A

component's failure modes affect its outputs which are then

progagated to other components. Rarely does the effect of a

failure mode identify the exact value of the output for a

component that fails. Rather, only certain characteristics

of the output can be defined. For example, total component

failure is a commonly modeled failure mode in which the

expected component output is incorrect or corrupted in some

manner. The exact value outputted is not so evident in the

analysis as the fact that the value is not the expected

value. The output of this component is propagated to another

component, whose behavior is affected by the presence of

this input aberration. The Model Builder processes must

therefore "reason" about effects of corrupted input data on

components, regardless of the value inputted.

To address this, qualitative characteristics of inputs

and outputs--not values--are propagated. Currently, three

characteristics for information are used to define the

effects of failure modes on interactions between components:

GOOD (y:g) characterizes a value (for variable y)

that expected under normal (not failed) conditions.

as

21
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BAD (y:b) characterizes a value as corrupted in some

unspecified manner (failed) whereby the value is not

the expected value.

NIL (y:n) characterizes a variable that is undefined or

whose value was not received on time.

For example, a failure mode effect in which the

component's output y is corrupted is represented as y:b.

This characterization of inputs and outputs is suffi-

cient to describe the effects of most failure modes. How-

ever, there are some instances in which additional informa-

tion is needed.

For example, consider a "threshold analyzer" component

that outputs the value it receives if that value is within

some threshold limit, and outputs an error signal otherwise.

The reaction of this component to an erroneous input is

dependent on whether or not the corrupted input lies within

the threshold limits. However, given only that the input

is corrupted in some manner (e.g., y:b), the exact value is

not known. Reliability analysts, under these cir-

cumstances, estimate the likelihood of each type of corrup-

tion based on any one or more of the following assumptions:

I. Assume the worst effect so that the overall model is

conservative.

2. Use measurement data for the failure mode that caused

the erroneous output to:



ao Model each possibility, adjusting the failure

rates of the possible effects by their likelihood

of occurrence.

b o Model the most likely possibility and ignore

extremely unlikely ones. This may not be conser-

vative if the disregarded condition causes a worse

effect.

The criteria for selection of an appropriate approach

are dependent on the failure mode that caused the effect and

therefore cannot be determined by the tool. To address

this, the input and output characteristics for components

may be specified non-deterministically such that multiple

effects of a failure mode are modeled, and a percentage,

representing "likelihood of occurrence," may be associated

with each distinguishing effect. Note that although the

user may recognize the existence of two possible output

characteristics for a given input characteristic combina-

tion, statistical data on such occurrences may not be avail-

able. Subsequently, assigning a percentage occurrence with

an input characteristic makes an assumption on the failure

mode characteristics that may be arbitrary. Therefore, the

use of non-deterministic models is discouraged.

As another example, consider the error signal generated

by the threshold analyzer. Suppose the input is not cor-

rupted and is within the tolerance of the threshold. A sig-

nal whose value is "no error" would be generated. The

23



characteristics of the error signal would be GOOD (i.e., not

corrupted). Suppose the input is corrupted and not within

the tolerance of the threshold. A signal whose value is

"error" is generated to another component. The characteris-

tic of the error signal is still GOOD (i.e., not corrupted).

However, the component receiving the error signal needs to

distinguish a "GOOD" signal to one that indicates error from

a "GOOD" signal that indicates no error in order to deter-

mine its course of action. Therefore, propagating only a

"GOOD" characteristic for the error signal is not sufficient

to analyze the effect of the error signal that resulted from

a detection of a failure (threshold violation). The actual

"value" of the signal must be propagated in addition to its

characteristic. The propagation of variable values is

further illustrated for the example trace in appendix D.

To summarize, characteristics of GOOD, BAD, and NIL are

used to represent the effects of failure modes on interac-

tions between components. In addition, likelihood of

occurrence may be associated with an input characteristic,

or the value propagated may be specified with the input

characteristic in order to provide compatibility of input

and output characteristics between components.

4.1.2.2. FUNCTIONAL DEFINITION

Having defined input and output characteristics, the

following are minimum requirements for a functional specifi-

cation of the lowest level BBD components:

24
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Completeness: The specification syntax should be suffi-

cient to model the component functionality. The rela-

tionship between the information that is input to the

component and the information that is produced by the

component should be defined by the syntax so that the

effects of inputs (that have been influenced by other

component errors) on the component function may be

analyzed.

Consistency: The functional specification

concise and unambiguous.

should be

Clarity: The analyst should be able to understand the

functional syntax.

Flexibility: The analyst should be able to specify the

component function in the most natural way. Also, when

the component functional definition is not well

defined, (as in early stages of design analysis), the

functional syntax should not force a definition of the

implementation.

Lowest Level Functional Syntax

With the above minimum requirements in mind, the BBD

components at the lowest level are defined as follows. Each

component function will be defined as a series of sentences

separated by a ";" Each sentence described a separate

action of the function. Within each sentence, one or more

clauses are defined. Each clause has two parts separated by

25



a "I" The right part contains a set of conditions which

must hold true for the left part to be evaluated. The left

part may be a variable, an exact value or a characteristic

which is considered to be the output of the sentence if the

condition on the right part holds true. The output of

whichever clause holds true is assigned to the variable on

the left side of the "=" sign. Fbr example:

[i] y = x I x > z

z I x <= z;

This sentence contains two clauses and states that the

variable y will equal x if x > z and will be z if x <= z.

In defining sentences, however, the user must ensure

that the component is completely defined on all input combi-

nations, and that clauses within a sentence do not have

overlapping conditions. For example, the function:

output y 1

2

x= 3

x > 0;

must be defined as:

output y 1 x = 3

2 I x > 0 and ^(x = 3); {where ^ is NOT}

Input/Output Variables.

Input variables (information received from another com-

ponent) and output variables (any information that can be
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seen by another component) are explicitely defined:

[2] Ex: INPUT x;

INPUT z;

OUTPUT y = x[x>z

zix<=z;

This states that the variables x and z are received

from other components. The output variable, y, contains

information that is sent to other components.

Function Macros

In addition to variables, functions may be specified to

the left of the i sign. For example:

[3] Ex: INPUT x;

INPUT z;

OUTPUT y= (+xz) Ix>z

(- z x) I x <= z;

This states that the output y will be the sum of x and

z if x > z and the difference of z and x otherwise. In order

to provide a more user-friendly functional specification,

Macros can be defined once

analyst. For example, instead

macro MAX may be defined:

and, thereafter, used by the

of function [I] above, a

[4] MAX(x y) --> x I x > y

Y i x <= y;
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The "-->" symbol indicates that the MAX function is

equivalent to the sentence to the right of "-->". With this

macro definition, function [2] could be specified by the

user as follows:

[5] Ex: INPUT x;

INPUT z ;

OUTPUT y = MAX(x z);

"However, internally, the representation of the function

would remain as in [2].

At this time, the proposed Model Builder contains

ros for the following functions:

mac-

<

logical comparators

#(<set><cond>)

number of elements satisfying condition

ALL(<set><cond>)

boolean that determines if all elements of set

condition

satisfy

28

Nil vs. Non-nil Function Categories

The function for the lowest level components is defined

in order to be able to trace the effects of input charac-

teristics through the function and define output charac-

teristics. These output characteristics then become input

characteristics for other components. Most functions define



output value as a result of input values. However, for this

reliability analysis, functions must define the output

characteristics as a result of input characteristics. For

example, for an adder, the function "+" is defined on

integer inputs• However, the inputs are {g,b,n}. Rules

must define output characteristics of {g,b,n} for all possi-

ble input characteristics, {g,b,n}.

Two rules for this translation are straightforward:

I • If all operands for a function are "g", then the output

of the function is "g".

o If one or more inputs to a function are "b", and all

other inputs to the function are "g", then it can be

assumed that the output of the function is "b".

However, what is the output of a function if one input

is "n" and another input is "b"? Functions can be categor-

ized into two groups according to this situation:

I o Nil sensitive (NS) operations: the output value of the

function is 'sensitive' to the absence of non-existent

inputs; that is, if any input is "n", the output is

"n" .

Ex.

The rules for defining output characteristics

sensitive functions are:

Model mathematical functions (e.g., +,-, etc.) as

producing no output if all its operands are not

available.

for nil
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OUTPUT "g" IF all inputs are "g"

"n" IF any input is "n"

"b" IF any input is "b"

input is "n".

and no

o Non-nil sensitive (NNS) operations: the output value is

not sensitive to nil input values such that any "n"

inputs are ignored in the calculation of the output.

Ex. A majority function may ignore nil or non-voting

inputs and determine the majority based on the

available inputs

The rules for defining output characteristics for

nil sensitive functions are:

non-

OUTPUT "g" IF all inputs are "g"

"n" IF all inputs are "n"

"b" IF any input is "b"

All mathematical functions, such as

assumed to be nil sensitive functions.

tence containing these operations will

translated into NS operations.

[3] would be:

+, -, etc. are

Therefore, a sen-

be internally

For example, the function in

[6] Ex: INPUT x;

INPUT z;

OUTPUT y = NS(x z) I x > z

NS(x z) I x <= z;

3O



If preferred, the user may specify functions using the

NS and NNS functions directly. This type of specification

is ideal at early stages of design when functional implemen-

tation details are not known. However, the user may prefer

to specify the function itself as in [3].

Non-Procedural Functional Specifications

For some components, it is sufficient to define the

function in the procedural manner described above. However,

for other components, the procedural specification is not as

easily defined; nor is it necessary to define it in such a

manner.

For example, in describing the function of a VOTER com-

ponent the user may wish to specify that the voter outputs

the majority of the inputs. However, at a high level of

design, it may not be known what implementation is involved

in the computation of the majority. Further, if defined in a

procedural format, the specification results in a nested

looping structure with variables for counting the number of

occurrences of each input value. It may not be important

for the analysis that the means of obtaining the majority is

defined; rather, it is only important that the definition

of a majority be 'understood' by the system.

In order to add flexibility to account for non-

procedural functional specifications, an enhancement to the

specification allows the use of universal and existential

quantifiers. These quantifiers specify conditions upon
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which the output is defined.

As an example of this,

defined as:

the VOTER function could be

[7] OUTPUT y:nil I ALL(x(i)) :nil

y = t I FA x(i) : (^nil) : :

t) > #(x(i) <> t)

# (x (i) =

This function states that the output, y, will be nil

(i.e. no output) if all inputs are nil, and the output, y,

will be the value of t if for all inputs not equal to nil,

the number of inputs equal to t will be greater than the

number of inputs not equal to t. Here, "FA" is used to

denote the universal quantifier, and " : :" is used to

separate the q aantifiers from the other conditions in the

clause.

The procedural specification differs from the non-

procedural specification by the presence of quantifiers in

non-procedural clauses. The universal quantifier specifies

an attribute that is applicable to a set. The set usually

represents redundant or replicated variables. Although simi-

liar, the universal quantifier is not equivalent to the

ALL({cond}) predicate. For example, the voter specification

in [8] redefined as:

[8] output y:nil ] ALL(x(i)) :nil

output y = t J #(x(i) = t) > #(x(i) = z)

AND ALL(x(i) :^n) AND ALL(z <> t) ;
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is not defined on all inputs (e.g., when some x(i) :n), but

not ALL(x(i) :n)) . In other words, a simple predicate is

"checked" to verify the validity of the clause, and a quan-

tifier alters the inputs so that the clause is valid. For

this reason, the quantifier is eliminated from the final 0CD

whereas all predicates remain in the final model. Analo-

gously, the existential quantifier is not equivalent to a

AT LEAST ONE(<cond>) predicate.

As another example of the use of quantifiers, consider

a type of voter that outputs a plurality of the inputs. In

other words, the value outputted may not be the clear major-

ity, but there may be a greater number of these values than

any other value inputted. This function would be specified

as:

[9] OUTPUT y:nil ALL(x(i)) :nil

y = t I FA z <> t, x(i) : (^nil)

:: #(x(i) = t) > #(x(i) = z)

This function states that the output, y, will be nil

(i.e. no output) if all inputs are nil, and the output will

be the value of t if for all values z not equal to t and for

all inputs not equal to nil, the number of inputs equal to t

will be greater than the number of inputs equal to z. (This

voter function is specified for the voter component in the

example traces in the appendices C and D.)

for

In order to make the specification more straightforward

the user, macro definition for majority may be defined,
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and the user need only specify:

OUTPUT y = MAJ(x(i)) ;

OR

OUTPUT y = PLU(x(i)) ;

for functions in [8] and [9] respectively.

4.1.2.3. FAILURE MODES

Failure modes are defined in the BBD as a

or an aberration of the component function.

lowest level, there is a definition of the

change to

Thus at the

component

function

function or

failure mode.

the outputs

than

under normal operation and a definition of the

change to the function for each component

Most failure modes are defined by a change to

produced by the component function rather

a change to the function itself.

For example, a component X may have a failure mode in

which any outputs are corrupted regardless of the inputs.

This failure mode would be defined by specifying a component

state, X BAD, whose function is simply to output corrupted

data:

[I0] OUTPUT y:b IF X BAD (for output y).

For all failure modes, transitions are defined from a

non-failed component state. These transitions become part

of the local reliability model for the component. A transi-

tion is defined for the X BAD failure mode as follows:
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[Ii] IF X NOF TRANTOX BAD by <failure rate>

which states that if component X is not failed (in state

X NOF), then it may enter a failed state X BAD according to

some probability of occurrence of the failure mode. Since

the Reliability Model Generator is not concerned with the

numerical rate associated with the failure mode, hereafter,

the failure rate will be eliminated from the transition.

It is not necessary to specify the system below the

level at which failure modes are defined, since only the

effects of component failure modes on the system are of

interest. Conversely, if the reliability of a system is to

be analyzed given a set of failure modes, the system

components must be defined at least to the level at which

failure modes are identified.

Example BB___D

Figure 7 shows the system building block diagram used

in trace 1 (of appendix C), and figure 8 shows the BBD com-

ponents. The first component (figure 8a) is the root or top

level component which defines the system inputs and outputs

(x and y respectively). Two subcomponents and their rela-

tionship are defined at this level. Component A inputs x

and outputs q. Component B inputs q and outputs y. The

internal function of components A and B is not defined at

this level; rather, a separate BBD component details this.

For component A (figure 8b), two more subcomponents, P and

VOTER are identified. Component P is specified as a
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BBD

Voter

System I

I

I

I

I

I

P (N) I I Voter

Figure 7. Voted Redundant Processor Example
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COMPONENT NAME: SYSTEM PARENT COMPONENT: EXAMPLE1

FUNCTIONAL SPECIFICATIONS:

INPUT x:OUTPUT y

(a)

SUBCOMPONENTS: A,B

SUBCOMPONENT STRUCTURE:

A::INPUT x;OUTPUT q;

B::INPUT q:OUTPUT y;

COMPONENT NAME: A PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT x;OUTPUT q;

(b)
SUBCOMPONENTS: P(i), VOTER

SUBCOMPONENT STRUCTURE:

FA (P(i))::INPUT x OUTPUT w:

VOTER:: FA (P(i)): INPUT w(i); OUTPUT q;

COMPONENT NAME: P PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

INPUT x; OUTPUT w:

(c)
FAILURE MODES:

NO-OP: OUTPUT w: (n)

BAD: OUTPUT w: (b)

COMPONENT NAME: VOTER PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

FA (P(i)):: INPUT w(i); (d)

OUTPUT q - N i ALL(w(i) : (n))

t I FA z<>t, w(i) : (^n) :: #(w(i)=t) > #(w(i)-z)

COMPONENT NAME: B PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT q;OUTPUT y _ q: i (e)

FAILURE MODES:

NO-OP: OUTPUT y: (n)

Figure 8. BBD for Example I

• e •
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redundant component

substructure for A:

(denoted by the subscript for P) . The

FA (P(i)) : :INPUT x; OUTPUT w;

VOTER: : FA (P (i)) : INPUT w(i) ; OUTPUT q;

specifies that all invocations of component P receive the

same input, x, and output a variable w. The voter component

receives all w(i) from the redundant components, P, and out-

puts a value q, which is identified as the output of the

component A also. Note that the specification of components

P and Voter do not specify more than their input and outputs

at this level.

Component P is specified in figure 8c.

component defined at the lowest level

failure modes are identified. The first failure

Since P is a

in the BBD, two

mode is

called NO-OP and its specifies that when P fails in this

manner, the output w is "n". The second failure mode,

called BAD, specifies that the output w is "b" regardless of

the inputs.

The voter component is specifed in figure 8d. The

function defined is equivalent to the one in [9]. There are

no failure modes represented for the voter, even though the

voter is a lowest level component.

Finally, component B is specified in figure Be. A sin-

gle failure mode, NO-OP, is specified. This failure mode is

identical to the NO-OP failure mode for P.
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4.1.3. LOCAL RELIABILITY MODELS

Although the local reliability models are not con-

sidered part of the BBD, it is important to distinguish

their specification and use from that of the lowest level

functional definition previously defined. Consider the

voter component used in the traces in appendix C and D. The

function for the voter is defined as in [8]. The local

reliability model for the voter component, defines for all

possible output characteristics, the combinations of input

characteristics and voter failure modes that cause the out-

put characteristic. If no failure modes for the voter are

modeled, its local reliability model is:

[12] OUTPUT y:n IF ALL (x (i) :n)

OUTPUT y:g IF #(x(i):g) > #(x(i):b)

OUTPUT y:b IF #(x(i):b) > #(x(i):g)

If failures are modeled for the voter, then the local

reliability model includes transitions for these failure

modes (see [Ii]) . Thus a local reliability model contains a

set of output characteristic definitions (OCD) for each pos-

sible output characteristic, and a set of transitions for

each failure mode. Local reliability models must be defined

for all lowest level components in the BBD before an aggre-

gate model of the entire SYSD is created by RMAS. Either the

user defines these models explicitely, or the LMG is invoked

to analyze the functional definitions as in figure 8, trace

the effects of component failure modes on

in the system, and from this trace

other components

define the local
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reliability model for the components (as in [12]).

Earlier designs of the Reliability Model Generator did

not distinguish the Local Model Generator from the Reliabil-

ity Model Aggregation System. Rather the global model was

generated coincident to the failure modes effects analysis

(FMEA) . However, the current design advocates a separation

of these functions for several reasons:

I o Often, the system is decomposed into subcomponents such

that the reliability models for the lowest level com-

ponents of the system are defined by the user directly,

rather than requiring the user to specify a component

function from which the Local Model Generator creates a

local reliability model. If the user specifies for the

lowest level components the local reliability models,

then the Reliability Model Aggregation System can use

these models directly to create the aggregate model for

the system.

o However, in order to define the local reliability

models for the system, the user must know all possible

abberations (characteristics) of inputs that could pos-

sibly affect the components function. This requires an

apriori Failure Modes Effects Analysis (FMEA) of the

effects of component failures on other components in

the system. One of the primary motivations for this

tool was to support the FMEA process. Therefore, an

automated trace of failure effects (e.g., the LMG)

4O



would be beneficial towards this end.

o Further, for complex components involving many inputs,

many outputs, and many failure modes, a well defined,

unambiguous reliability model is difficult to specify.

° The Local Model Generator can be used to check the

accuracy of the reliability models created by the user.

. The user can easily modify local reliability models

directly without having to recreate the entire FMEA

analysis of the Local Model Generator.

. In defining a local reliability model (whether manually

or via the LMG), assumptions are made regarding the

data characteristics as a result of failure modes.

These assumptions (discussed in section 3.4) are

interactively verified by the user in the LMG. There-

fore, the Local Model Generator is not a tool that is

not used without interaction with the user. However,

its trace of failure modes could be more thorough than

performed by an analyst manually.

The first phase of the prototype implements only the

RMAS. With this in mind, the reliability Model Aggregation

System is described in section 3.3 followed by the discus-

sion of the Local Model Generator in section 3.4.

4.2.

Once

defined,

SYSTEM DESCRIPTION

the building block components have been

the analyst defines a candidate configuration or
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system description. Each component in the SYSD is an

instantiation of a component defined in the BBD. There

may be several instantiations of a single BBD component

in the SYSD. The SYSD delineates the scope of the system to

be analyzed, such that components in the BBD not instan-

tiated in the SYSD are not included in the analysis.

This allows system subsets to be analyzed separately, if

required. When a component is selected for instantiation,

all. subcomponents for that

with it to the level

represented in the BBD. This

component are instantiated

at which failure modes are

defines the lowest level of

abstraction selected for analysis. The top-level unreliable

condition to be analyzed is defined with respect to the

highest level component of the SYSD. By changing the

highest level of the SYSD or by changing the level at which

failure modes are

varying levels of

of the BBD. This

cal failure mode analysis. Figure 9 shows

configuration alternatives for analyzing

puter system such as that shown in figure 5.

defined, a system may be modeled at

detail without altering the structure

permits easy modification for criti-

three possible

a simple com-

The prototype currently under development will use a

graphical interface to specify instantiation of BBD com-

ponents into the SYSD and will allow the user to graphically

select the connections between components (e.g., mouse and

menu) .
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BBD/SYSD distinction

The BBD/SYSD distinction allows a functional

specification of components independent of their roles in

a system. Generally, the BBD and SYSD enforce

separation of function and structure so that alternative

configurations can be analyzed simply by altering the

SYSD. A component's

structural constraints

ponents that are common

component. For example, a

definition

with

may, however, include

respect to other com-

to all instantiations of that

multiprocessor may have ports

that are always intended to connect to I/O devices. By

allowing these constraints to be specified in the BBD

description of the component, an instantiation of the com-

ponent in the SYSD could enforce these constraints, thereby

disallowing improper configurations.

4.3.

the

RELIABILITY MODEL AGGREGATION SYSTEM

The Reliability Model Aggregation System (RMAS) uses

local reliability models (created by the LMG or entered

directly by the user), defined for the lowest level com-

ponents of the SYSD to be analyzed, and knowledge of the

interrelationship between components (provided by the BBD

and SYSD) to aggregate the local reliability models into a

global reliability model for the system.

Define the problem instance for the RMAS:

Given a SYSD, a supporting BBD with local reliability
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models defined at the lowest level components, and an

unreliable condition, define a model of the failure

modes that contribute to the unreliable condition.

Recall that the SYSD defines the highest and lowest

level view of the system to be analyzed, and at the lowest

level, local reliability models define the effects of the

component failure modes and input characteristics on the

output characteristics of the components. Whether these

local reliability models are defined by the user or are gen-

erated by the Local Model Generator is irrelevant at this

time. The unreliable condition is a definition of the state

of the component at the highest level that constitutes an

unreliable system. Normally, this is defined as an undesir-

able output of the function defined at the top level.

Therefore, the goal of the analysis is to define a global

reliability model of a highest level unreliable condition

from the lowest level local reliability models.

Figure i0 shows a hierarchy of Reliability Model Aggre-

gation System modules (RMAS modules) in which each module

corresponds to a separate component abstraction (defined by

the BBD/SYSD), beginning at the root, or highest level of

component description. The purpose of each RMAS module is to

define a reliability model for that component level that

comprises an aggregate of the lower level modules.

Initially, a RMAS module is instantiated for the

highest level component. Given the unreliable condition
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Figure 10. RMAS
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specified in terms of an undesirable output defined at this

level, RMAS identifies the immediate subcomponents. If the

subcomponent is an intermediate level component also, a

second level RMAS module is instantiated for the subcom-

ponent. Its subcomponents are identified, and for each suc-

cessive intermediate level component abstraction, a

separate RMAS module is instantiated according to the sub-

component interdependencies defined in the BBD/SYSD for that

component level.

If the subcomponent is a lowest level component, a

local reliability model is defined which identifies, for

each output characteristic, conditions such as: (I) com-

ponent failure modes on component outputs and (2) erroneous

input characteristics, that contributes to the output

characteristic.

Each such condition is analyzed by the parent component

RMAS module. For failure modes (I), transitions are defined

explicitly in the local reliability model for the subcom-

ponent that failed. Each input characteristic (2)

corresponds to an output characteristic of some other sub-

component that interacted with the subcomponent. For exam-

ple, in figure ii, the input characteristic for component C

corresponds to the output characteristic for component B.

The RMAS for the parent component, therefore, must investi-

gate the model for component B to find transitions that con-

tributed to its output characteristic which, in turn, served

as an input characteristic to component C. If component B
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is an intermediate level component, then, as stated before,

a RMAS module is invoked for it (at the third level in the

hierarchy). This RMAS module must create a reliability

model of component B that defines the states and input

characteristics that contribute to B's output characteristic

being analyzed by the parent component.

If component B is a lowest level component, then its

reliability model is interrogated directly. Component B's

output characteristic may be dependent on its state and its

input characteristics, etc. At each iteration of this back-

tracing, transitions are defined for component state

changes, and analysis of input conditions is deferred to the

component from which the input was generated. This back-

tracing continues until:

I o the output characteristic being analyzed is not derived

from an input characteristic,

2. the input of the parent component is reached, or

3. a cycle is detected.

Upon reaching one of these conditions, the "chain of

conditions" (i.e., input/output characteristics and failure

modes) found among subcomponents are aggregated into a sin-

gle, local reliability model for the parent component. The

failure mode transitions found may be changed to reflect

changes to the parent component rather than simply the out-

puts local to the subcomponent. Further, failure recovery
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transitions involving multiple subcomponents (and therefore,

not represented in any single subcomponent model) may be

detected. This model is returned to the next higher level

where the tracing continues to other components in the tree.

In this manner, reliability models are "bubbled" up to the

highest level component which defines the model for the sys-

tem.

Instantiation of RMAS modules proceeds in a top-down

fashion with respect to the unreliable condition defined at

the highest level. If aggregation were to proceed bottom-up

without regard to the high level unreliable condition, the

resulting model may contain transitions and state space ele-

ments that are irrelevant to the unreliable condition being

analyzed.

Reliability models returned from each level in the

problem-solving hierarchy adhere to the same format. That

is, each model defines, for the component, the characteris-

tics of its outputs given a relationship between the charac-

teristics of its inputs and the states of the components (as

a result of failures). Also, transitions define changes to

the component as a result of failures or recoveries from

failures (FDIR schemes).

The next section describes the RMAS modules in more

detail. Since there are several intricate details of this

algorithm that inhibit a comprehensive description at this

time, an overview of the tasks involved in RMAS is given
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first. This is followed by specific design details underly-

ing each task. The explicit algorithm for the RMAS is

listed in Appendix B.

4.3.1. RMAS IMPLEMENTATION

Figure 12 shows the major tasks of RMAS, and indicates

each of these specific details by a "special" note number.

These special notes will be referenced in the general pro-

cess description given below and discussed in detail in sec-

tions 3.3.2.x, where x is the note number. Initially, the

algorithm for aggregating all lowest level models into a

reliability model for the parent is described. Then, in

section 3.3.2.7, the RMAS is augmented to handle aggregation

of intermediate level reliability models.

First, the aggregate model for the parent component is

initialized to the local reliability model of the subcom-

ponent that generated the parent's output. The first task,

task i, is then invoked for this subcomponent. The function

to be performed by task 1 is to define a new reliability

model that includes all transitions that contribute to the

output characteristic.

The subcomponent's local reliability model is composed

of output characteristic definitions (OCD) for each dif-

ferent component output characteristic and transitions for

each component failure mode. For a given output charac-

teristic, task 1 first decomposes the OCD into disjunctive

normal form clauses (note I, figure 12) so that each clause
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is delineated by a logical OR, and within a clause, condi-

tions are delineated by logical AND. Each condition within

each clause is then analyzed to find transitions that con-

tribute to the output characteristic. Task 2 is called

within task 1 for each condition in the clause. It returns

an output characteristic definition (OCD) for the condition

and a list of transitions that contribute to the condition.

The parent's OCD is changed to reflect these new transitions

found (see 3.3.2.3). After all conditions for the clause

have been analyzed, the next clause is analyzed in the same

manner.

Task 2, given a condition to analyze, determines the

condition type as either a component state (i.e., non-

failed, failed via failure-mode-l, failure-mode-2, etc.), an

input characteristic (i.e., GOOD, BAD, NIL), or an input

predicate. We will defer the third condition type of "input

predicates" to section 3.3.2.4. If the condition is a

failure state, then a transition explicitly represents the

component's transition to the failure state. This transi-

tion has the form:

IF <component> N0F TRANTO <component>_<x> by <x> RATE

where <component> is the name of the component, NOF identi-

fies a not-failed state, and <x> uniquely identifies the

failure mode. This transition is returned from task 2.

to

If the condition is an input condition, then in order

find the transitions (and OCD) that contribute to the
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input condition, task 1 is called for the subcomponent that

outputted the condition. Task 1 is, therefore, called

recursively from within task 2, which was in turn called

within task I. At this time, it is useful to distinguish

the invocations of task 1 (see figure 13). Let the subcom-

ponent being analyzed by the first invocation of task 1 be

referred to as the INPUTTING COMPONENT since it inputs the

data characteristic common to the subcomponents, and let the

subcomponent of the latter invocation of task 1 be referred

to as the OUTPUTTING COMPONENT since it outputs the data

characteristic to the INPUTTING COMPONENT. Thus, task 2 of

the INPUTTING COMPONENT invokes task 1 for the

OUTPUTTING COMPONENT. Task I, given the output characteris-

tic for the OUTPUTTING_COMPONENT, performs as before. The

new OCD, for the output characteristic, is decomposed into

clauses, each condition of each clause is analyzed

separately by task 2 to find transitions that contribute to

the condition. As before, the conditions in each clause may

represent component states for which simple transitions are

defined or input conditions, for which task 2 will invoke a

new task I. This recursive process proceeds until there are

no more input conditions to analyze, the input of the parent

component is reached, or until a cycle is detected. Section

3.3.2.6 discusses the mechanisms for handling cycles.

The returned transitions from the

OUTPUTTING COMPONENT's task 1 to task 2 of the

INPUTTING COMPONENT are defined in terms of input conditions
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and state conditions for the OUTPUTTING COMPONENT. Task 2

may change the transitions returned to reflect additional

changes to the INPUTTING_COMPONENT. The decisions as to

what changes are made to the transitions and when such

changes are made is discussed in section 3.3.2.3. RMAS

attempts to change the model so that the least number of

variables is used by substituting for some output charac-

teristics, an equivalent expression which defines that

characteristic in terms of other variables. By choosing

carefully which variables will be referenced in the final

model, and which will be inferred by the other variables

(see 3.3.2.3), RMAS reduces the number of variables which

will eventually be state space vector elements. This model

reduction is not optimum in terms of the number of states

generated by a model. Further techniques are applied to the

resulting global model of the system in the Model

Reducer/Encoder.

Task 2 returns the transitions to the instance of task

1 from which it was invoked. Task 1 proceeds with another

condition, another clause, or returns to the task 2 from

which it was invoked. Eventually, the initial top level task

1 is reached and the aggregate model for the parent com-

ponent is defined.

4.3.2. SPECIAL NOTES

The preceding discussion outlined the general flow of

tasks for RMAS. Implementational details omitted there are
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discussed in the next sections. Each of the following sec-

tions (3.3.2.1 through 3.3.2.7) corresponds to a special

note on figure 12. The following discussion may also serve

as an introduction to the documentation of the task algo-

rithms for RMAS, contained in appendix B, or as a guide to

the trace of the example reliability analysis problems given

in appendices C and D.

4.3.2.1. DISJUNCTIVE NORMAL FORM

In Task 1, an OCD is first reordered into

normal form (DNF). Enforcing this ordering

disjunctive

has several

advantages that will be introduced here and elaborated in

subsequent sections. First, when transitions are found that

contribute to a condition in the 0CD, the conditions in the

OCD are sometimes changed in task 2. By ordering the 0CD in

DNF form, the changes made to a clause are localized to that

clause (The algorithms for changing the OCD require that the

OCD be in DNF form) . Second, as will be seen in section

3.3.2.6. DNF clauses allow detection of

analysis. Third, DNF provides a uniform

minimizes ambiguity.

cycles in the

ordering that

To translate a boolean expression into DNF form, the

following rules are applied iteratively on the expressions.

i. A AND B --> one clause

I AAND B

2. X OR Y --> separate subclauses
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I X

I x

3. (X OR Y) AND Z -->

I XAND Z

I XAND Z

where I delineates the clause boundaries, A and B are

individual conditions, and X and Y are subclauses or

individual conditions.

In the absence of parentheses, it is assumed that that

logical OR has the lowest precedence, logical AND is next,

and boolean comparators (<, >, =) have the highest pre-

cedence. Therefore,

A OR B > C AND D is equivalent to:

A OR ((B > C) AND D) which, in DNF is:

I A

I (B > C) AND D

4.3.2.2. ORDER CONDITIONS FOR ANALYSIS

Task 1 must analyze all conditions in all clauses of an

OCD in order to find the OCD and all transitions that con-

tribute to an output characteristic. To maintain the status

of analysis of each condition, consider 3 global queues.

(The queues are global for simplicity of description. In

fact, the queues may be partitioned into subsets for each
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subcomponent). To keep track of the order of analysis, task

1 maintains a queue of conditions to be analyzed - called

the FUTURE CONDITIONS queue. Task 1 removes one condition

at a time from this queue and places the condition on the

PRESENT CONDITIONS queue. Once a condition has been

analyzed, it is simply removed from the PRESENT_CONDITIONS

queue and placed on the PAST_CONDITIONS queue and another

condition is taken from the FUTURE CONDITIONS queue. If the

same condition appears in two or more clauses, then this

condition need not be analyzed in the second clause. In

other words, the condition is on the PAST CONDITION queue,

and it has already been determined what transitions contri-

bute to the condition. Therefore, the condition is removed

from the PRESENT CONDITIONS queue (it remains on the

PAST CONDITIONS queue).

If the subcomponents within a parent interact in a

cycle, then, in analyzing the input conditions for a subcom-

ponent, there will exist two invocations for that subcom-

ponent on the stack of recursive invocations of Task i. It

may be that the second invocation of Task 1 for the subcom-

ponent is the same condition currently under analysis in the

first invocation (thus the condition is on the

PRESENT CONDITIONS queue). Since the goal of the analysis

is to find transitions that contribute to a condition, we

can conclude that there are no transitions that contribute

to the condition through the current path. Therefore, task

1 for the second invocation returns no transitions. We
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defer further

3.3.2.6.

discussion of this situation to section

In summary, the three queues are used to establish an

orderly analysis of the conditions within clauses for an

OCD, to prevent repeated analysis of conditions that had

been analyzed in previous invocations of Task i, and to

detect a cycle.

4.3.2.3. COMBINE OUTPUT CHARACTERISTIC DEFINITIONS

As discussed in the general overview, task 2 invokes

task 1 for another subcomponent (OUTPUTTING_COMPONENT) in

the analysis of an input condition for the subcomponent

under its domain (INPUTTING_COMPONENT). Task 1 for

OUTPUTTING COMPONENT returns an OCD, which includes a set of

contributory transitions, for that input condition of the

INPUTTING COMPONENT. The transitions returned from the

OUTPUTTING COMPONENT's task 1 to task 2 of the

INPUTTING COMPONENT are defined in terms of input conditions

and component states for the OUTPUTTING COMPONENT. Task 2

must aggregate the OCD and transitions returned from the

OUTPUTTING COMPONENT with the OCD of the INPUTTING COMPONENT

so that changes to all affected conditions are represented

in the transitions. To illustrate this, consider the fol-

lowing (illustrated in figure 14):

INPUTTING COMPONENT (A) :

OUTPUT y:b IF x:b and q:b and A_FAIL
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Outputting component

B_FAIL

Inputting component

A_FAIL

y:b

v

Figure 14. Inputting vs Outputting Components
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< transitions >

OUTPUTTING COMPONENT (B) :

OUTPUT x:b IF w:b and B FAIL

IF B NOF TRANTO B FAIL

The INPUTTING_COMPONENT, A, is analyzing its OCD for

y:b and has called task 1 for OUTPUTTING_COMPONENT, B, to

find any transitions that contribute to A's input condition

x:b. The OCD returned from B has a single transition that

represents a failure of component B, and the OCD for x:b

represents how B's failure affects its output x. (Of

course, the input w:b would also have to be analyzed, but

assume for this illustration that no transitions were found

to contribute to w:b). Task 2 of component A must aggregate

this information to define the affect of the transition

found (i.e., B's failure) on A's output characteristic y:b.

There are two options:

i ° Replace the reference to x:b in A's output characteris-

tic definition with its equivalent definition in B's

output characteristic definition. Do not change the

transition returned from B.

AGGREGATE OC___Dfo____rrparent of A and B:

OUTPUT y:b IF (w:b and B FAIL)

and q:b and A FAIL

IF B NOF TRANTO B FAIL
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. Change the transition returned from B to reflect a

change to x:b also. Do not change A's OCD.

AGGREGATE OCD for parent of A and B:

OUTPUT y:b IF x:b and q:b and A_FAIL

IF B NOF TRANTO B FAIL

IF w:b TRANTO x:b

ENDIF;

When option I is used, the variable replaced is put on

a list (called LOGICAL list) with its equivalent representa-

tion that replaced it in the OCD. If the variable is refer-

enced again in another clause (or in another invocation of

task 1 for the subcomponent), the logical equivalent is sub-

stituted in for the variable. A corresponding list called

BASES is used to keep track of those variables that are

referenced directly in the OCD or transitions for the aggre-

gate model.

To reiterate, the list BASES will be used to identify

those conditions that will be referenced in the OCD and in

the transitions, and the list LOGICAL will identify the con-

ditions that will not be referenced in the OCD or transi-

tions. LOGICAL list will also identify the combination of

BASES that are equivalent to the logical condition. All

variables will be on the BASES list except if they are sub-

stituted by a logical equivalent of other variables using

option i. Option 1 is advantageous in that it eliminates
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reference to an intermediate variable in the aggregate

model. This reduces the state space size of the aggregate

model and eventually for the overall model of the system.

It also involves a simple substitution, whereas the algo-

rithm for option 2 is not as straight forward (see procedure

MODEL_COMBINATION_2 in the algorithm for RMAS.) . Therefore,

whenever possible, task 2 invokes option i. However, some

situations require the use of option 2. These situations

occur in the specification of non-fault transitions (to be

discussed in 3.3.2.6) and in the specification of input

predicates (to be discussed in note 3.3.2.4). In both these

situations, an internal variable is found which must be

represented explicitly, and therefore option 2 is used to

combine models between subcomponents instead of option I.

Figure 15 shows a revision of RMAS in which task 2 is aug-

mented with options 1 and 2.
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4.3.2.4. INPUT PREDICATES:

For some components, defining an OCD in terms of simple

boolean relationships among input characteristics is not

sufficient. This is especially true when inputs are redun-

dant and the effects of single and multiple redundant com-

ponent failure modes on other components are analyzed. It is

therefore necessary to allow input characteristics to be

defined by predicates. For example, define a VOTER as a

component that outputs the majority value of the inputs it

receives from redundant components. In specifying the OCD

for the voter's corrupted output as a function of its
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corrupted inputs, one might define the "number" of inputs

that are corrupted (i.e., #x(i):b for all x(i) inputs to the

voter).

tions

cares.

By allowing this specification, the output defini-

for components may contain conditions of input predi-

In the case of a voter, the OCD may be:

OUTPUT y:b if #x(i):b > #x(i):g

This states that the voter's output, y, is corrupted if

the number of corrupted inputs exceeds the number of non-

corrupted inputs. In the absence of the # predicate, an

equivalent specification must be defined as:

OUTPUT y:b IF xl:b and x2:b

OR xl:b and x3:b

OR x2:b and x3:b

OR xl:b and x2:b and x3:b

for a voter component with three inputs. Thus, being able

to specify input predicates is beneficial. Further, the

final aggregated model benefits from specifying the state

space elements in terms of predicates. ASSIST contains a

rich set of primitives for specifying state space elements

and transitions that change those elements. For example,

the "#" predicate may be represented as a single state space

integer whose range is from zero to three. A possible ASSIST

syntax for this is:

X: [0..3] {state space}
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DEATH IF X < 2. {specification of unreliable states}

where x represents the number of inputs that are not cor-

rupted. The Death statement represents the state of the

system in which the output of the voter is corrupted. Con-

trast this with the ASSIST model:

STATE = XI[0..I], X2[0..I], X3[0..l]

DEATH IF (Xl=l AND X2=l)

OR (XI=I AND X3=l)

OR (X2=l AND X3=I)

OR (Xl=l AND X2=IAND X3=l)

where Xl, X2, and X3 represent whether or not inputs i, 2 or

3 respectively is corrupted.

In order to specify input predicates, RMAS requires

guidance in finding transitions that contribute to predi-

cates. Therefore, internal to RMAS are a set of templates,

each template indicating how a predicate should be analyzed

and represented in the aggregate model. For example, the

model of the # predicate might consist of:

MODEL : # (<cond>)

COI: <cond>

Change rep: no

Contributory transitions:

replace IF (<cond>)

67



with IF #(<cond>) > 0

replace TRANTO <cond>

with TRANTO # (<cond>) =# (<cond>) + 1

Detractory transitions:

replace <cond>

with #(<cond>)=#(<cond>) - i

ASSIST CONVERSION: #(<cond>) : integer

The template first specifies the condition of interest

(COI). The COI is a simple input characteristic that is to

be traced to find transitions that contribute to the predi-

cate. The COI for #(X(i) :b) is X(i) :b - find transitions

that contribute to a particular input to the voter being

corrupted. The contributory transitions section indicates

the changes that are to be made to the transitions found for

the COI to reflect changes to the predicate. Here, the tran-

sition:

IF X(i):B TRANTO ...

is changed to:

IF #(X(i):b) > 0 TKANTO ...

Similarly, the transition:

If ° . . TRANTO x(i) :b

is changed to:
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IF ... TRANTO#(X(i) :b) = #(X(i):b) + i;

A similar change is defined for detractory transitions.

The definition and use of detractory transitions is

described in the next section. Figure 16 shows the change to

task 2 to support input predicates.

The template also defines the ASSIST representation of

the function to be used in Process 4 to encode the aggregate

system model into ASSIST primitives. For the "#" predicate,

the template defines a state space element whose name is

indicative of the condition and the function and whose type

is integer. Further specification may be added to define

the bounds on the integer.

Finally, the change rep{resentation} field indicates

that a predicate can not explicitly be represented in ASSIST

syntax, and therefore, a representation in ASSIST using a

different predicate must be substituted. ASSIST allows

integer state vector variables, and therefore, the predicate

# can directly be represented in ASSIST using an integer

variable as shown above. However, the predicate, ALL, for

example, can not be represented in ASSIST directly. There-

fore, it would be encoded using an integer variable also by

comparing the number to the total number of elements possi-

ble (e.g., ALL(X(i) :b) becomes #(X(i) :b) = N where N is the

number of X(i)) . The template for ALL therefore includes a

"change rep" field that refers to the "#" predicate:

69



I For all outputs of parer_v_ thatFindoutputedSUbc°mponent
!

f! Past conditions

I_ Present conditions_

Future conditions_

f
coIAnalyze1

Task 1a[ Lowest Intermediate I

Task 2

What condition
require analysis?

Return OCD

t
|

C

/l

What condition
require analysis? []

Component Istate (faults)

Return OCD I

Simple input _.characters

Which options? I

BB []J

J%

I_r.n'O_OI

New OCD

I

V

Analyze
i source
' component

I1_ Special note _ Control flow
number

Q Conditional [_ Control flow
with condition

[""] Function or task [_ Data flow

Figure 16. Input Predicates

70



MODEL: ALL(<cond>)

COI: <cond>

Change rep: #(<cond>)=?<query user> = max(obj)

from SYSD where obj is component (or component of

data) in <cond>

Contributory transitions:

replace IF (<cond>)

with IF # (<cond>) = Max(obj)

replace TRANTO <cond>

with TRANTO # (<cond>) =# (<cond>) + 1

Detractory transitions:

replace <cond>

with #(<cond>)=#(<cond>) - 1

ASSIST CONVERSION: # (<cond>) : [0..max(obj) ]

Recall from section 3.3.2.3 that transitions and the

OCD returned from analysis of an input condition are aggre-

gated with the current OCD from the inputting component.

Two options were described for this aggregation, with the

preferred option (option i) replacing the input characteris-

tic in the aggregated model with an equivalent definition

from the OCD of the outputting component. However, if the

input characteristic is a COI for a predicate, it must

remain in the model so that the transition may be changed to

reflect the predicate. In this situation, option 2 must be
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used to combine models in order to preserve the COI variable

until the reference to the the variable is replaced by the

changes as specified by the contributory and detractory

transitions fields of the input predicate.

4.3.2.5. DETRACTORY TRANSITIONS:

Task 1 iteratively calls task 2 to find transitions

that contribute to a condition in each clause of the OCD. A

given transitions may also detract from the presence of

other conditions, and this effect must be reflected in the

transition also. For simple conditions such as simple input

characteristics that are modeled as bases and for component

states, no changes are necessary to reflect detractory tran-

sitions.

For example:

IF P NOF TRANTO P BAD ...

is a contributory transition for PBAD, but it is also a

detractory transition for PNOF. Since it is implicitly

assumed that a component can not be in more than one state

simultaneously, there is no need to change the transition

to:

IF P_NOF TRANTO P_BAD, NOT(P NOF) BY P BADRT

The same holds true for simple input conditions that

are modeled as bases:
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IF x: (g) TRANTOx: (b) . . .

But for predicates (#(<cond>), for example) , the detraction

is subtle :

For Example:

IF PNOF TRANTO PBAD, #(x: (b)) = #(x: (b)) + 1 BY ...

Recall that #(x: (b)) and #(x: (g)) are base conditions.

When #(x: (b)) increases by I, #(x: (g)) decreases by i. To

reflect this change:

IF PNOF TRANTO PBAD, #(x: (b)) = # (x: (b)) + 1

#(x: (g)) = #(x: (g)) - 1 BY . . .

To accomplish

FIND DETRACTORY TRANSITION,

condition. The procedure

this,

is called

determines

a procedure,

in task 2 for each

if any previously

defined transitions detract from the current condition (if

the current condition is a predicate) and if any currently

defined transitions detract from previously defined predi-

cate conditions. Figure 17 illustrates this addition to task

o

4 °3.2 °6. NON-FAULT TRANSITIONS :

As discussed in the general overview, in order to find

transitions that contribute to an input condition, the com-

ponents are traced in reverse order of the flow of informa-

tion between components so that an input condition is traced

to the component responsible for that condition. That
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component's output condition may depend on its input condi-

tions, and so forth until the input of the parent component

is reached or a cycle is detected. This section discusses

the implications of cycles in the analysis and procedures

for handling them.

Recall that when task 1 is called to analyze an output

characteristic, the output characteristic definition (OCD)

is first translated into disjunct normal form so that each

clause is delineated by a logical OR, and within a clause,

conditions are delineated by logical AND. We showed that all

OCD's could be translated into an equivalent DNF form. Once

in DNF form, task 1 substitutes in for variables on the LOG-

ICAL list, their base equivalent expression. As a result,

there are five possible DNF clause categories:

OUTPUT R I R case 1

J R AND A case 2

I ^R AND A case 3

I ^R case 4

I A case 5

where R is the output condition, ^R represents NOT(R) and A

represents the rest of the clause which does not include a

reference to R.

Cases 1-4 occur as a result of the substitutions of

BASES for LOGICAL conditions and indicates that a cycle in

the analysis has occurred. Case 5 is the normal OCD that has

been discussed thus far in which the output effect R occurs
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in the presence of other conditions

component faults).

(input conditions and

4.3.2.6.1. CASES 1 AND 2:

In cases 1 and 2, the effect R occurs on both sides of

the conditional, indicating that within the cycle, no change

to R has occurred. Since the purpose of the analysis is to

find transitions that contribute to the occurrence of condi-

tion R, case i and 2 clauses indicates that there are no

transitions that contribute to R as a result of this

sequence of conditions among the subcomponents in the cycle.

Case 2 differs by case 1 only in the presence of other

conditions A in the output characteristic definition for R.

Analysis of the conditions within A need not be performed

since the OCD indicates that the condition R is true a

priori (as evidenced by the inclusion of R in the OCD.

Therefore, analysis of conditions within A would not be

beneficial in the pursuit of transitions that contribute to

the occurrence of R for this clause. Thus, the output clause

"R AND A" may be ignored, and the conditions within A not

analyzed. In order to ensure the correctness of transitions

found in other clauses for the OCD of R, any transitions

returned by a case 5 type clause should be changed in task i

to reflect that the R condition must not be true for the

transition to occur:

Change IF A TRANTO ...

76



TO IF A AND ^R TRANTO ...

for all transitions found in other clauses.

This change appears similar to the changes that are

made in task 2 to aggregate two component models (option 2).

To differentiate the use of these two routines, figure 19

illustrates an example in which both option 2 of task 2 and

case 2 of task 1 change the aggregate transition. Task i of

the INPUTTING_SUB's OCD analyzes two clauses of the its out-

put characteristic R. The first clause adheres to case 2

which indicates that a cycle is detected from which no tran-

sitions have occurred, and is not analyzed. The second

clause, however, is still analyzed. Let the condition B in

clause 2 be an input condition. Task 2 calls task 1 for the

OUTPUTTING SUB of B and it returns an OCD for B. Task 2 of

the inputting component then uses option 2 to collapse the

OCD returned into an equivalent transition. Task 2 returns

this transition to task i which removes the first clause

from the output characteristic definition and adds a ^R con-

dition to the rest of the transitions.

4.3.2.6.2. CASES 3 AND 4:

In cases 3 and 4, the effect ^R occurs on the condi-

tional side of the OCD indicating that somewhere in the

cycle, a transition changed the condition from ^R to R.

Since the analysis at each subcomponent in the cycle identi-

fies explicitly any transitions that result from component

failures (i.e., changes in component state), this transition
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must be a non-fault related transition. An example of a

non-fault transition is a recovery transition, (i.e., some

change in the operational state of the components as a

result of failures). A non-fault transition is handled in

the following way:

i o Analyze the rest of the clause (A in case 3). Any

transitions returned here are not subject to the

changes mandated by other clauses (cases 1 and 2).

o Add a new transition to reflect the change of state

from ^R to R

IF A and ^R TRANTO R BY T(CYCLE)

Because the clauses are ordered in DNF form, the least

number of conditions necessary to define the non-fault tran-

sition is localized in one clause. The rate T(cycle) will

be represented in ASSIST as a mean and standard deviation of

the cycle time. This value must be entered by the user

before the SURE model is generated, just as the failure

rates of the components must be entered by the user.

If a non-fault transition is returned from an

OUTPUTTINGCOMPONENT to an INPUTTING_COMPONENT, option 2

will be used to aggregate the models so that the loop vari-

able (R) is not eliminated from the state space. Further-

more, option 2 need not be applied to the non-fault transi-

tion since the transition already references R.
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4.3.2.6.3. CASE 5:

Case 5 clauses are ones in which the OCD does not

reference the output effect R or ^R as a condition in the

clause. This is the typical clause that are present in the

absence of cycles. Each condition in this clause is

analyzed separately (through the invocation of task 2) and

results are combined as specified in section 3.3.2.3. Tran-

sitions returned from the analysis of these conditions may

be changed to reflect the elimination of any type 1 or type

2 clauses for the same output characteristic. This was dis-

cussed in section 3.3.2.6.1.

4.3.2.6.4.

The

described.

CASE SUMMARY:

following summarizes the clause analysis just

CASE I: OUTPUT R IF R

i. remove clause from output characteristic definition

2. in order for transitions from other clauses to be con-

verted to affecting R, they must include:

IF ... and ^R ... TRANTO

CASE 2: OUTPUT R IF R AND A

i. Do not analyze A.

. Remove clause from final output characteristic defini-

tion for R.
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, in order for transitions from other clauses to be con-

verted to affecting R, they must include:

IF ... and ^R ... TRANTO

CASE 3: OUTPUT R IF ^R AND A

I. Add a non-fault transition:

IF A and ^R TRANTO R BY T (cycle)

o Analyze A: The transition_ returned are not subject to

stipulation 3 of cases 1 and 2 since the non-fault

transition already represents the transition to R.

CASE 4: OUTPUT ^R

i. Add a non-fault transition:

IF A and ^R TRANTO R BY T(cycle)

CASE 5: OUTPUT R IF <normal conditions that excludes R>

I. Analyze all conditions [i]

. Any transitions returned are subject to the changes

specified by cases 1 and 2 of other clauses.

Figure 19 illustrates the changes to task 1 to address

non-fault transitions. A detailed example of the use of

these cases is given in appendix D (example 2).

1 Recall from section 3.3.2.2 that only those

tions not on PAST CONDITIONS queue are analyzed.

condi-
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i i

Task 1

INPUI-rlNG_SUB'S OD:

OUTPUT R IF R AND A

OR B AND C

Clause 1 - Case 2 - ignore

Clause 2 - Case 5 - call Task 2 for B

I I I

Task 2 - Analyze B

Call Task 1 for input B

IF Q TRANTO D

IF ^E TRANTO B

ENDIF;
I I

OUTPUT R IF B AND C

IF Q TRANTO D

IF ^E AND ^R TRANTO B

ENDIF;

o

o Other transitions for C
O

mll__

v

Task 1

OUTPUI-I'ING__SUB'S OD:

OUTPUT B IF D AND E

IF Q TRANTO D

Figure 19. Illustration of Changes to Trans#ions
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4.3.2.6.5.

The detection of cycles that

transitions is the only mechanism

recovery transitions. It is assumed,

MODELING RECOVERY TRANSITIONS - ANALYTICAL BASIS

involve "unspecified"

for specifying fault

therefore, that any

fault recovery would involve more than one component and

that those components interact in a cycle. This is a rea-

sonable assumption since a typical FDIR scenario involves a

component or components that fail, some mechanism that

detects the failure and depending on the FDIR scheme, takes

some action to modify the effects of the failure at some

place in the system. ThrouEh detection of cycles, RMAS

identifies that faulty effect whose behavior is modified by

the recovery action. Thus FDIR schemes are cyclic by

nature. Even self-repairing components have a substructure

consisting of a separate detection/recovery component

whether that "component" is software or hardware. One

alternative method of modeling fault recoveries uses a cov-

erage number - representing the probability that a system in

a failed state transitions to non-failed state.

case, the recovery could be modeled similar to a

failure mode:

In this

component

IF P BAD TRANTO P RECOVER BY <rate>

This is sufficient for many models

recovery mechanism itself is not modeled.

in which the
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4.3.2.7. INTERMEDIATE LEVEL MODELS:

This final section concerns the invocation of RMAS to

combine component models that are themselves combinations of

lower level models. A subcomponent model to be combined is

an aggregation of lower level subcomponents also.

For example, in figure 20, to define an aggregate model for

component P, the subcomponent models for components X, Y and

Z are combined. Components X, Y, and Z have models that are

themselves aggregates of subcomponent models from earlier

invocations of RMAS. Component X, for instance, has a model

that is an aggregate of subcomponents A and B. This aggre-

gate model was defined by RMAS for component X.

Each model for X, Y, and Z has an OCD for each of its

outputs and transitions that define failure events and

failure recoveries between subcomponents within X, Y, and Z°

RMAS, for component P, must analyze these models and define

and OCD for each of P's outputs and transitions that reflect

changes to P's state.

The models (OCDs and transitions) for X, Y, and Z con-

tain three types of conditions:

I. subcomponent state conditicns (failures for A, B, C,

etc.),

. input and output conditions that are also visible to

the parent component, P (e.g. input condition q, s, u,

and w in figure 20) .
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Figure 20. Intermediate Level Component analysis
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o input conditions between A and B, C and D, or E and F,

that are not visible to the parent component, P (e.g.,

r, t, and v) .

As before, the key to defining an aggregate model is to

trace the interrelationship between the models (e.g. via

conditions q,s,u, and w) . However, these conditions are not

always present in the OCD alone. Rather, it is possible

that some are only referenced in the transitions for other

conditions. Therefore, the transitions that have been

defined for the lower level models must be searched, so that

all conditions contributing to the output characteristic are

traced.

The OCDs and transitions returned from analysis of con-

ditions in transitions are subject to option 1 or option 2

rules, except that the substitutions will be made on the

transitions instead of on the parent OCD.

This change is implemented as follows: RMAS maintains

for each condition, a list of transitions that contribute to

and detract from the condition (the contributory transition

list (CTL) and detractory transition list (DTL)) . For each

OCD of the parent component, input conditions that are

inputs to the parent component (e.g. u for component Z, s

for component Y, and q for component X) are analyzed through

task 2 as before. For state conditions in each clause (e.g.

failure states of A, B, C, D, E, or F) or for any input con-

ditions not visible to the patent component, P (e.g. r, t,
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or v), the CTL and DTL lists are inspected and all transi-

tions that contribute to and detract from these internal

conditions are searched. The conditions part of such transi-

tions may include parent input characteristics, internal

(subcomponent) input characteristics, or subcomponent

failure mode states.

Any parent input characteristic not yet analyzed causes

an invocation of task 2 for their analysis.

For internal input characteristics or subcomponent

failure mode states, the corresponding CTL/DTL lists are

inspected and the search continues recursively for all

parent input characteristics that need to be analyzed.

Figure 21 shows the RMAS algorithm with all extensions.

4.4. LOCAL MODEL GENERATOR

The Local Model Generator traces the effects of lowest

level component failure modes on other components in the

system by following the functional description of the com-

ponents (defined in the BBD/SYSD) . For each of the lowest

level components in the SYSD, the Local Model Generator

defines a local reliability model.

Stated formally: define the problem

Local Model Generator (LMG) :

instance for the

Given
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nt_ Find subcomponentI For all outputs of pare that outputed

( Sub's OCD>

I Past conditions

I Present conditionsts_

J Future conditions>

,f,
l AnalyzeCOl

Task 1

IIII I Lowest

+
-_ Intermediate

Task 2

I Return OCD

t
What condition
require analysis? _

._ Inputspredicate

+
to reflect

operations Ill

A

IiPa,;ntOCDI

New OCD

I Analyze
source
component

I

I
|

I
|

]------I_! I

[] Special note _ Control flow
l number

Q Conditional _ Control flow
with condition

_1 Function or task _ Data flow

Figure 21. Intermediate Level Analysis
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, a hierarchical description of the candidate architec-

ture (represented in the BBD and SYSD) in which com-

ponent functions are defined down to the lowest level

of interest.

o a high level system unreliable condition for which the

reliability is to be established,

define for each of the lowest level components, a local

reliability model. Each local reliability model defines for

the component all output characteristics as a function of

the states of the component (i.e., failure modes) end the

characteristics of the input to that component (e.g., cor-

rupted or non-corrupted inputs).

Before detailing the process flow of the LMG in the

next sections, it may be beneficial for the reader to review

the function and failure mode specification of the inter-

mediate and lowest level components defined in section

3.1.2.2 and the distinction between the RMAS modules and the

LMG modules outlined in section 3.1.2.4.

4.4.1. PROCESS OVERVIEW:

The Local Model Generator consists of 3 processes: one

process (Ii) is invoked for the highest level and one for

each intermediate level component, and two processes (LI and

L2) are invoked for each lowest level component. These are

shown in figure 22. Like the RMAS processes, the LMG

processes are instantiated in a hierarchy corresponding to

the components defined in the LYSD (and supporting BBD) .
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Done
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Figure 22. Local Mode/Generator
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Initially, the highest level component module (Ii) is

instantiated. This process is involved primarily with con-

trolling the order of invocation of the other LMG modules.

Given a unreliable condition on the system, process II iden-

tifies the immediate subcomponents involved in the function.

Separate reasoning modules for each subcomponent are then

instantiated by process Ii in an order according to the

functional flow.

If the first subcomponent in the function is a parent

component also (i.e., has subcomponents defined in the BBD),

another invocation of process Ii is invoked for it to iden-

tify the next lower level subcomponents involved in the

function.

If a subcomponent is defined at the lowest level in the

BBD where component failure modes are modeled, process L1 is

invoked. Recall that failure modes are modeled as a change

to the function, such that at the lowest level, there is a

functional definition for the component under normal operat-

ing conditions and a functional definition for each possible

failure mode. At this level where component failures are

modeled, process L1 inputs a set of possible input charac-

teristics received from its parent component. For each

operational state of the component (non faulted and each

failure mode), L1 traces the effects of all input charac-

teristics through the

output characteristics.

component, a set of

function to determine the resulting

L1 produces, for each state of the

OCDs and transitions for each output

91



characteristic that could possibly result from the component

state and input conditions.

After all component states have been analyzed, Process

L2 combines 0CDs for the component states according to out-

put characteristics so that a single set of OCDs for the

component is defined. These OCDs together with the transi-

tions comprise the component's local reliability model which

is returned to process Ii of the parent component.

Process Ii passes the output characteristics to the

subcomponent module which inputs these characteristics. If

that subcomponent is defined in the BBD at an intermediate

level, then Ii is invoked for it. Otherwise, L1 is invoked

and a local reliability model is defined. This depth-first

trace proceeds through the hierarchy until eventually, the

outputs of the system are reached.

The resulting local reliability models for each of the

lowest level components can be interrogated by the user or

given to the RMAS processes discussed in the previous sec-

tion in order to define a global model for the system.

Several implementation details have been omitted in the gen-

eral overview just presented. The next sections discuss

each process in detail.

92

4.4.2. PROCESS Ii

As stated above, Process Ii, for each intermediate

level component, manages the trace of the functional flow



between its subcomponents. First Ii invokes the module for

the subcomponent who receives the parent's inputs. The

module invoked is either an intermediate level module (Ii)

or a lowest level module (LI and L2) depending on the level

at which the corresponding subcomponent is defined in the

BBD. Both modules return a list of OCDs for each subcom-

ponents' outputs. Process II determines the next subcom-

ponent to receive these output characteristics and deter-

mines the order of invocation of those subcomponents. The

next subcomponent module is then invoked and given the pos-

sible input characteristics to analyze. When the output

characteristics of this parent's outputs have been returned

by the last subcomponent, Process Ii

teristics to the parent module,

invoked. ,PP If the subcomponents

passes these charac-

Ii, from which it was

interact in a cyclic

manner within a parent module, process II must keep track of

the input characteristics given to a subcomponent module so

that when no new input characteristics are to be analyzed,

the trace ends.

4.4.3. PROCESS L1

At the lowest level, where component failures are

modeled, process L1 inputs a set of input characteristics

received from its parent compon£nt. For each operational

state of the component (non faulted and faulted) L1 deter-

mines the effects of the erronecus input characteristics on

the component output characteristics. Thus, a given set of
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input characteristics is compared against each failure mode

for the system, and the output effects for all combinations

are generated.

The next section introduces the algorithm for process

L1 through an example function. Afterwards, a detailed dis-

cussion of several aspects of the algorithm is given.

The following example will be used to illustrate the

steps of process LI:

L1 EXAMPLE

Consider a component that performs the following

tion:

func-

[1] input xl, x2, r;

IF r = 0 THEN z = xl + 3;

If r = 1 THEN z = x2 + 4;

output y = z IF xl > x2

y = x2 IF xl <= x2;

Using the nil sensitive operation default (discussed in

section 3.1.2.2), this function would be encoded as:

[2] input xl, x2, r;

z = NS (xl)

NS (x2)

output y = z

J r = 0

I r = I;

J xl > x2

x2 I xl <= x2;

(* z = xl + 3; *)

(* z = x2 + 4; *)
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Consider input characteristics: xl: (g,b,n), x2: (g,b)

and r = 0,I. Process L1 defines the possible output charac-

teristics (g,b,n) given this function and the possible input

characteristics. The output characteristic definition that

is produced by L1 for this function and the input charac-

teristics is:

[3] OUTPUT CHARACTERISTIC DEFINITION FOR Y:

output g IF xl: (g) and x2: (g) and r=l

OR xl: (b) and x2: (g) and r=l

OR xl: (g) and x2: (g)

output b IF xl: (b) and r=0

OR xl: (b) and x2: (b)

OR xl: (g) and x2: (b)

output n IF xl: (n)

If any failure modes are to be modeled for this com-

ponent, then the additional function definitions for each

failure mode would have been defined in the BBD, and these

would be analyzed in the same manner by process LI. For

this illustration, assume that no failure modes are modeled,

and therefore, the OCD in [3] is the only output of process

LI.

The algorithm shell for process L1 is shown in figure

23. Process L1 has a nested looping structure that iterates

over all sentences within a function, and all clauses within

a sentence. Three phases are distinguishable.
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LI: For each function:

Phase I: For each sentence (delineated by :)

For each clause (delineated by I)

Substitute characteristics in for input variables

Do until (no more substitutions)

Propagate

Substitute

End do;

Phase 2: Case (type to left of l)

I: function ...

2: variable ...

3. characteristic . ..

end case;

end; (for each clause)

Phase 3: Combine clauses according to output characteristic

Detect and correct overlaps between OCDs

Detect and correct overlaps within OCDs

Separate condition from data characteristics

Remove intermediate variable characteristics

end: (for each sentence)

end; (for each function)

end; (LI)

Figure 23. Skeleton for Process L 1
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In the first phase, the characteristics for each vari-

able are substituted into a given clause. Initially, only

input characteristics are known. These characteristics are

then propagated through the conditions and functions defined

in the clause. Each propagation results in a generation of

characteristics for other variables. These new characteris-

tics are substituted in for all other occurrences of the

variable, propagated and so forth until no new substitutions

may be made. The manner and order of this

propagation/substitution phase will be illustrated generally

for the example above, and then explained in sections

3.4.3.2.1 At the end of phase one, the possible output

characteristics of a given clause are known.

In the second phase, each the output of the clause is

instantiated for each possible output characteristic. This

substitution triggers a reiteration of

propagation/substitutions until each output characteristic

is defined in terms of input characteristics. The definition

of each output characteristic as a relationship to the input

characteristics is known as the output characteristic defin-

ition (OCD) .

After all clauses for a sentence have been analyzed,

phase three combines OCDs for a common output characteris-

tic. These OCDs are then modified so that:

i . The resulting OCDs for a sentence do not overlap

between characteristics. Overlaps might lead to an
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°

erroneous model for the component. For example:

output g if x: (g)

output b if x:(g) OR y: (b)

is not acceptable because the output can not be both g

and b when x: (g). Therefore, phase 3 ensures that no

overlaps occur between OCDs.

Overlaps within a particular output characteristic

should also be eliminated if possible. For example:

output g IF x: (g) OR

IF x: (g) AND y: (b)

could be simplified to:

output g if x: (g)

Conditions such as xl > x2 or xl <= x2 are not included

in the OCD, since the values of xl or x2 that determine

the truth or falsity of the condition are not known.

Rather, the condition is separated from the variable

characteristics in the OCD.

The output characteristic definitions must be defined

in terms of the input characteristics without reference

to intermediate variables. For example, the OCDs in

[3] do not include reference to variable z since z is

an intermediate variable dependent on the inputs xl and

x2. Therefore, after the conditions are separated from

the characteristics, the characteristics of intermedi-

ate variables are removed from the OCD (but the



,

variables remain in the conditions).

For each clause within the resulting 0CD, any variable

whose characteristic set includes all possible charac-

teristics (g,b,n) can be eliminated from the clause

since the characteristic of that variable is not a

determinant of the characteristic output for the

clause.

4.4.3.1. EXAMPLE OF PROCESS L1

The next sections describes the three phases of process

L1 for the example shown above. The correlation to the

exact phases and steps of the algorithm will not be main-

tained for this illustration. For instance, for the sake of

brevity, two clauses within a sentence are often analyzes

concurrently, even though the algorithm analyzed each

sequentially. Rather, the intent of this example is to give

the reader an understanding of the operations of substitu-

tions, propagations, and the general goal of process LI.

The sections following this example delve into the underly-

ing mechanics of the process. The algorithm itself can be

found in Appendix B.

PHASE 1 :

For each sentence of the function (delineated by ;)

I ° Substitute all input characteristics in for input vari-

ables.
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o Propagate the input characteristics through the condi-

tions and operations of the function until the output

characteristics are defined.

FIRST SENTENCE:

[4] z = NS(xl) i r = 0

NS(x2) I r = i;

(* z = xl + 3 *)

(* z = x2 + 4 *)

I. Substitute xl: (g,b,n) and x2: (g,b) in for variables xl

and x2 respectively:

z = NS(xI: (g,b,n))

NS (x2 : (g,b))

I r = 0

I r = I;

(* clause 1 *)

(* clause 2 *)

2. Propagate the input characteristics of xl and x2 through

all conditions and functions in the clause to the right of

the I symbol (each clause is delineated by i) •

Not applicable in this example.

PHASE 2 :

I. Instantiate the characteristics of each clause's output

into separate clauses.

The output of these clauses are the result of some

operation, NS. Recall that nil sensitive functions (NS) will

output nothing (or nil) if any of the inputs is nil. There-

fore, the output characteristic possibilities for NS func-

tions is:
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NS OUTPUT= good IF all operands are good

nil IF any operand is nil

bad IF any operand is bad

AND no operand is nil

Since there is only one operand in each of the NS

operations above, applying the NS rules to [4] results in:

z : (g)

z: (b)

z : (n)

I xl: (g) and r=0

J xl: (b) and r=0

I xl: (n) and r=0

for the first clause, and:

z: (g) J x2: (g) and r=l

z: (b) I x2: (b) and r=l

for the second clause. [2]

PHASE 3:

i. Combine the two clauses according to common characteris-

tics for z:

[5] z : (g)

z: (b)

I xl: (g) and r=0

{ x2: (g) and r=l

I xl: (b) and r=0

I x2: (b) and r=l

[2] Variables not referenced in a clause are assumed

to have full characteristic possibilities (i.e., the

characteristic of these variables is irrelevant to the

outcome of the clause.
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z: (n) I xl: (n) and r=0

Phase 3 also changes the OCDs to eliminate overlapping

conditions among clauses. However, there are no such over-

laps in these OCDs, and therefore, a discussion of overlaps

is deferred until analysis of the next sentence.

SECOND SENTENCE:

PHASE I:

Keferring to the second sentence in [2]:

[6] output y = z i xl > x2

y = x2 I xl <= x2;

The second sentence is analyzed in the same way using

the characteristics for z: (g,b,n) defined in [5] and the

input characteristics xl: (g,b,n) and x2: (g,b) . However, not

all combinations of input characteristics and characteris-

tics of z are possible. For example, z can not have a

characteristic of b if both xl and x2 are g. To detect

these inconsistencies, the intermediate variable is substi-

tuted in for each characteristic and the input conditions

under which the z obtains its characteristic is included in

the condition for the clause. For example, the substitution

of z: (g) in for z must be accompanied by the possible condi-

tions of the input characteristics that enable z: (g) to

hold. In this way, separate clauses for each possible sub-

stitution are defined:
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Consider each possible combination of z, xl and x2 for

the first clause in sentence [6]:

[6] output y = z i xl > x2;

PHASE 1 :

i. For z: (g) and xl: (_,b,n) and x2: (g,b) and r=(0,1) :

[7] output g { xl: (g,b,n) > x2: (g,b)

{and xl: (g) and r=0} and z: (g)

I xl: (g,b,n) > x2: (g,b)

{and x2: (g) and r=l} and z: (g)

The conditions within { } indicates conditions that must

hold for z: (g) to be true (see [5]).

First, find the intersection of characteristic possi-

bilities for all variables in each clause:

xl: (xl: (g,b,n) and xl: (g) --> xl: (g))

clause of [7]

in the first

x2: (x2: (g,b) and x2: (g) --> x2: (g))

clause of [7]

in the second

The result after this substitution is:

output g I xl: (g) > x2: (g,b) and r=0 and z: (g)

I xl: (g,b,n) > x2: (g) and r=l and z: (g)

Next, note that xl is involved in a ">" comparison in

the second clause and has a characteristic possibility of
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"n" It is meaningless to compare a variable that is "n"

The condition is assumed to fail. Therefore, the "n"

characteristic is removed from the set for xl. To ensure

that the final OCD is complete for all input characteris-

tics, an additional clause is created that specifies that

the output is "n" if any input is "n":

[s] output g I xl: (g) > x2: (g,b) and r=0 and z: (g)

i xl: (g,b) > x2: (g) and r=l and z: (g)

output n J xl: (n)

PHASE 2 (Instantiate the clauses for each characteristic) :

Since the clauses already specify a single output

characteristic, no further instantiations need be done.

PHASE i:

° For z: (b) and xl: (g,b,n) and x2: (g,b) :

[9] output b I xl: (g,b,n) > x2: (g,b)

{and xl: (b) and r=0} and z: (b)

I xl: (g,b,n) > x2: (g,b) {and

r=l} and z: (b)

x2 : (b) and

Simplify [9] by taking the intersection of characteris-

tics for each variable:

output b I xl: (b) > x2: (g,b) and r=0 and z: (b)

I xl: (g,b,n) > x2: (b) and r=l and z: (b)

Here, again the "n" clause can be eliminated from the
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characteristic possibilities for xl and an additional clause

can be created.

[I0] output b I xl: (b) > x2: (g,b) and r=0

] xl: (g,b) > x2: (b) and r=l

output n J xl: (n)

and z : (b)

and z : (b)

PHASE 2 (Instantiate the clauses for each characteristic):

Since the clause already specifies a single output

characteristic, no further substitutions need be done.

PHASE I:

3. For z: (n) and xl(g,b,n) and x2: (g,b) :

[II] output n I xl: (g,b,n) > x2: (g,b)

and r=0} and z: (n)

{and xl : (n)

Simplify:

output n i xl: (n) > x2: (g,b) and r=0 and z: (n)

Again, the "n" clause can be eliminated from the

characteristic possibilities for xl and an additional clause

can be created. However, this leaves the original clause

with no possible characteristics for xl. Therefore, the

clause is invalid and can be eliminated altogether (The new

clause remains).

[12] output n i xl: (n)

PHASE 2 (Instantiate the clauses for each characteristic):
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Since the clause already specifies a single output

characteristic, no further substitutions need be done.

Summary fo____rth__eefirst clause o__f th__e second sentence (combine

[8], [I0], and [12])

[13] output g I xl: (g) > x2: (g,b) and r=0 and z: (g)

i xl: (g,b) > x2: (g) and r=l and z: (g)

output b I xl: (b) > x2: (g,b) and r=0 and z: (b)

I xl: (g,b) > x2: (b) and r=l and z: (b)

output n t xl: (n)

Second clause of sentence i_nn [_] :

output y = x2 I xl <= x2;

PHASE 1 :

i. For x2: (g) and xl: (g,b,n) :

[14] output g I xl: (g,b,n)

AFTER PHASE 2 :

[15] output g 1 xl: (g,b) <= x2: (g)

output n I xl: (n)

<= x2: (g) ;

PHASE 1 :

2. For x2: (b) and xl: (g,b,n) :

[16] output b I xl: (g,b,n) <= x2: (b) ;
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AFTER PHASE 2 :

[17] output b I xl:(g,b) <= x2: (b)

output n I xl: (n)

Summary for the second clause of the second sentence:

bination of [15] and [17])

(corn-

[18] output g J xl:(g,b) <= x2:(g)

output b I xl: (g,b) <= x2: (b);

output n I xl:n

PHASE 3 :

Combine the characteristics for the output for the two

clauses of the second sentence ([13] and [18]):

[19] OUTPUT CHARACTERISTIC DEFINITION FOR Y:

output g xl: (g) > x2: (g,b) and r=0 and z: (g)

xl: (g,b) > x2: (g) and r=l and z: (g)

xl: (g,b) <= x2: (g)

output b xl: (b) > x2: (g,b) and r=0 and z: (g)

xl: (g,b) > x2: (b) and r=l and z: (g)

xl: (g,b) <= x2: (b)

output n xl : (n)

As stated in the general overview, phase 3 is responsi-

ble for ensuring that the newly created OCD for a component

is complete and non-redundant: The OCD is complete if it

specifies and output characteristic for every possible input

characteristic, and it is non-redundant if there is no input
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10B

characteristic combination for which more than one output

characteristic is defined. Also, characteristics for inter-

mediate level variables for the sentence (i.e., variables

that are not inputs to the function or outputs for the sen-

tence) are eliminated from the OCD:

[20] OUTPUT CHARACTERISTIC DEFINITION FOR Y:

output g xl: (g) > x2: (g,b) and r=0

xl: (g,b) > x2: (g) and r=l

xl: (g,b) <= x2: (g)

output b xl: (b) > x2: (g,b) and r=0

xl: (g,b) > x2: (b) and r=l

xl: (g,b) <= x2: (b)

output n xl : (n)"

[A]

[B]

[C]

[D]

[E]

IF]

[G]

Phase 3 must analyze the OCD and detect any overlaps in

input characteristics. Overlaps occur because the evaluation

of a function is dependent on conditions among input and

internal variables. For example, the output of a function

may be dependent on a equality comparison of two variables.

The determination of the truth or falsity of the conditions

is dependent on the value of the data. However, the value

of the data is not known. Rather, only the characteristics

of the data is known. This is not so much an incomplete

specification of functions as it is a symptom of the incom-

plete description of faults in general. For example, when a

component fails, and it is said that the failure causes cor-

rupted output. The value of the corrupted output is not

known. Another component acting on the corrupted input may



test the input in a condition. The result of the condition

can not be known since the value is not known.

The results of this is a non-deterministic output

characteristic specification in which two or more output

characteristics may be defined on a particular combination

of input characteristics, the distinguishing factor being

the internal condition.

Overlaps can take on three types:

i. the input characteristics can be identical and the

difference is soley in the conditions

(e.g. x:g and y:g

x:g and y:g

x < y

x >= y)

. the input characteristics of one domain can be a subset

of the input characteristics of the other domain, so

that there is some characteristic that is in one domain

and not the other

(e.g. x:g and y:g,b x < y

x:g and y:g x < y)

3. Or the overlap may be a combination of the two:

(e.g. x:g and y:g,b x < y

x:g and y:g x >= y)

Further, the overlap can occur within or between output

characteristics. It is advantageous to resolve overlaps
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between characteristics first so that the resulting output

definition for the component would be complete. Afterwards,

overlaps among clauses within an

definition may be eliminated so

results.

output characteristic

that a more concise 0CD

For dealing with overlaps between OCDs,

options are ranked in order of preference:

the following

i. Heuristics may be applied depending on the output

characteristics involved in the overlap. These heuristics

are patterned after the way such overlaps are handled manu-

ally. For example,

a ° If the overlap is between a good characteristic and a

bad characteristic, and if one of the overlapping

characteristics is a bad characteristic, then a conser-

vative assumption would shift the overlap to the bad

output characteristic.

b . If the overlap is between a nil characteristic and a

good or bad characteristic, and if one of the overlap-

ping characteristics is a nil characteristic, then a

reasonable assumption would shift the overlap to the

nil characteristic.

2. It is possible that some of the characteristic possibil-

ities in the condition are not possible. For example, a

reasonable assumption would conclude that a variable, xl,

whose value is good, (i.e., xl: (g)) would not be equivalent

Ii0



to a variable, x2, whose value is corrupted (i.e., x2: (b)).

Therefore, a clause containing the condition, x:g = y: (g,b),

can be reduced to x:g = y:b by assuming that a corrupted

input will not equal a non corrupted input. This is a rea-

sonable assumption that may be used to eliminate charac-

teristic possibilities from clauses. Other assumptions that

may hold are:

x:b = y:b

x:g = y:g

However, the assumption may not always hold. There-

fore, the analyst is interrogated as to the validity of the

assumption if it is relevant to the particular clause.

Because these particular assumptions would apply to most

cases, the user is interrogated on these assumptions (called

condition propagation rules) during phase one. In phase

three, when the process L1 detects an overlap between two

clauses in different OCDs, the user is asked if the inter-

secting characteristics may be applied to one or the other

OCD.

3. Failing a resolution of the overlap by options 1 or 2,

the user may elect to define a non deterministic output

characteristic definition, by including for each path, and

estimate of the probability of occurrence of the distin-

guishing characteristic or condition. However, the use of

this option is not encouraged because of the percentage

assigned to each possibility is often subjective (whereas

111



the other options have some logical foundation) and the

resulting OCD has more conditions to analyze.

Returning to the example in [20], the following overlaps

between output characteristics are detected.

Overlaps :

[A] and [F]

[C] and [D]

[A] and IF] : overlap on xl: (g) and x2: (b) and r=0

Option la applies to this set of overlapping clauses,

and therefore the user would be interrogated as follows:

Query :

output g I xl: (g) > x2: (g,b) and r=0

output b J xl: (g,b) <= x2: (b)

(the overlapping condition is : xl : (g) and and

r=0) Can the overlapping condition be assigned to the

OCD for characteristic "b ''_

Given the following overlapping clauses:

[A]

IF]

x2:(b)

The user would answer yes, and process L1 would sub-

tract the intersecting characteristics from the OCD for g:

Result :

output g I xl: (g) > x2: (g) and r=0 [A]

output b i xl: (g,b) <= x2: _b) [F]

[C] and [D] : overlap on xl: (b) and x2: (g)

Option la applies to this _et of overlapping clauses
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also, and after an affirmative response to a user query, the

result would be:

Result :

output g I xl: (g) <= x2: (g) [CI]

I xl: (b) <= x2: (g) and r=l [C2]

output b I xl: (b) > x2: (g,b) and r=0 [D]

RESULT AFTER OVERLAPS BETWEEN OCDs HAVE BEEN RESOLVED:

output g I xl: (g) > x2: (g) and r=0

I xl: (g,b) > x2: (g) and r=l

I xl: (g) <= x2: (g)

[A]

[B],[C2]

[Ci]

output b I xl: (b) > x2: (g,b) and r=0 [D]

I xl: (g,b) > x2: (b) and r=l [E]

I xl: (g,b) <= x2: (b) [F]

output n I xl: (n) [G]

Once overlaps between output characteristic definitions

have been eliminated, phase 3 analyzes each OCD and detects

overlaps between clauses within an OCD. It is not as criti-

cal that these overlaps be eliminated since it is only the

overlaps between OCDs that make the resulting model ambigu-

ous or incomplete. However, phase 3 detects clauses within

an OCD that are subsets of other clauses and eliminates that

subset clause from the final OCD. This reduces the size of

the final OCD.

Referring to the OCD in [20], the following overlaps
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within output characteristic definitions are identified:

i. [A] AND [Cl]

2. [B] AND [Cl]

3. [D] AND [F]

4. [E] AND [F]

The first and fourth overlaps above are super/subset

clauses. Therefore, clause [A] and [E] may be eliminated.

Combining these, the resulting OCD is:

RESULT AFTER OVERLAPS WITHIN HAVE BEEN RESOLVED

output g l xl: (g,b) > x2: (g) and r=l [B]

I xl: (g) > x2: (g) [CI]

output b I xl: (b) > x2: (g,b) and r=0 [D]

I xl: (g,b) <= x2: (b) IF]

output n J xl: (n) [G]

Finally,

definition,

teristics.

enumeration

to produce the final output characteristic

the conditions are separated from the charac-

Also, any variables in clauses that involve an

of all possible data characteristics may be

eliminated from the clause.

SEPARATE CONDITION FROM INPUT CHARACTERISTIC:

output g l xl: (g,b) and x2-(g) and r=l (xl > x2) [B]

J xl : (g) and x2 : (g) (xl > x2)



[Cl]

output b I xl: (b) and x2: (g,b) and r=0

I xl: (g,b) and x2: (b)

(xl > x2) [D]

(xl <= x2) [F]

output n I xl: (n) (xl > x2) [G]

ELIMINATE FULLY ENUMERATED VARIABLES:

There are no variables in this OCD that

enumerated characteristic sets.

have fully

With the clause delineator "l" replaced by the logical

OR, this OCD is identical to the one presented in [3].

Note that the final OCD for this component is not fully

defined. For example, it does not specify the output

characteristic for all cases that x2: (n). However, it is

defined on all input characteristics given to LI. This is

one way in which the model created by the LMG may be supe-

rior to a user defined model on all inputs in that there are

possibly less conditions for the RMAS to consider. The model

will not be incorrect in the RMAS if an impossible combina-

tion is modeled in the OCD. However, it would be erroneous

if a combination that is possible is not modeled. Therefore,

by modeling all combinations (as may be done if the user

enters the local reliability models for the RMAS), the state

space may be larger than necessary, but the model would not

be less correct.
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4.4.3.2. SPECIAL NOTES

4.4.3.2.1. Phase i

As shown in the example, the first phase is responsible

for propagating all input characteristics and local variable

characteristics through the current sentence until output

characteristics are defined. This propagation is accom-

plished through an iteration of:

a. Substituting characteristics in for variables, and

b° Propagating these characteristics through functions and

conditions in which the variables are involved in order

to define characteristics for other variables.

Three special attributes of

substitution/propagation phase merit discussion:

the

1. Define the set of characteristics possibilities for a

variable at an instance in the analysis as the variable's

characteristic set. As a result of propagating characteris-

tics through an operation or a function, other variables'

characteristic sets may be changed. These changes must be

substituted in for all instances of these variables and pro-

pagated through any other affected functions. Therefore, at

any one time in phase 1, there will be many variables whose

characteristics must be substituted/propagated. In order to

perform this in an organized manner, a given

substitution/propagation is performed until all variables
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that are affected have had their new characteristic sets

substituted/propagated. This is a depth-first approach.

2. Intermediate variable characteristic possibilities are

dependent on other variable characteristic sets. For exam-

ple, an intermediate variable may have a characteristic of

"g" only if an input variable's characteristic is "g"

according to analysis of a previous sentence in the func-

tion. When the intermediate variable is characteristics are

substituted/propagated, these dependencies must be substi-

tuted in also.

3. Further, for a given set of variables to be substituted

at any one time, a priority ordering that favors intermedi-

ate variable substitutions before input characteristic sub-

stitutions is used. This reduces the number of substitu-

tions that must be made since (as explained above) condi-

tions upon which the intermediate variable characteristics

depend are substituted in with these characteristics.

Substitution:

Substitution is performed as follows: Given a set of

characteristics to be substituted in for a variable, the

intersection of these characteristics with the characteris-

tics currently associated with the variable is calculated.

This intersection is then considered to be the new set of

characteristics for the variable. Each instance of the

variable in the clause is then updated with the new

characteristics.

set of
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Propagation:

Propagation consists of the following: For each

instance of the variable, the the variable characteristics

are propagated through the operation or condition in which

the variable is involved. These conditions and operations

may be nil-sensitive operations, non-nil sensitive opera-

tions, or boolean comparators such as =, <>. Other boolean

comparators such as <, >, <=, >=, are not propagated through

since the result of the boolean comparison is dependent on

the value of the variables involved, and these values are

not generally known. For example, what is the result of the

comparison x > y when x has the characteristic of "b"? The

result is dependent on the value of x, and that value is not

known. Therefore, assumptions regarding boolean comparators

are handled interactively with the user in phase 3. The

following details the propagation rules for nil-sensitive

and non-nil-sensitive operations and equality comparators.

A. Nil-sensitive operations:

If the variable is a parameter in a nil sensitive

operation, and if all parameters of the operation are

characterized (i.e., all have characteristics currently

associated with them), then the nil sensitive propagation

rules are applied to separate the clause into three types of

clauses (i.e., for "g,b,n" characteristic outputs) according

to the parameters' characteristics:
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Nil-sensitive propagation rules:

I. "G" clause:

Condition:

If all parameters have a characteristic possibility

"g", then:

of

Action:

Create a clause in which the result of the function is

assigned characteristic "g" and all parameters for this

clause are assigned characteristic "g".

2. "N" clauses:

Condition:

If there is any parameter with

then:

a "n" characteristic,

Action:

Create a clause for EACH variable x(i) that has a "n"

characteristic in which the result of the function is

assigned characteristic "n", the variable x(i) is

assigned the characteristic "n", and assign all other

variables, x(k) where k > i, (according to some

predetermined ordering) retain their currently assigned

characteristics (i.e., no changes to these variable

characteristics). Further, remove from variables, x(j)

where j < i, the characteristic "n". [3] If any result-

ing variable sets are empty (i.e., the only charac-

teristic was "n" for that set), then remove the clause.
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3. "B" clauses:

Condition:

If there are no parameters that have "n" as the only

characteristic possibility and there is any parameter

with a "b" characteristic, then:

Action:

Create a clause for EACH variable x(i) that has a "b"

characteristic possibility if all variables x(j), where

j < i, have a characteristic possibility "g". [4] The

new clause is formed by:

a. assigning the variable x(i) a "b" characteristic

b. the result of the function is assigned charac-

teristic "b",

c. all variables x(j) for j < i are assigned the "g"

characteristic,

d. assign all other variables, x(k) where k > i,

(according to some predetermined ordering) retain

their currently assigned characteristic sets with

[3] Note: Since no two clauses may address inter-

secting conditions (see section 3.1.2.2), the clauses,

must define a exclusive OK condition, instead of simply

a boolean inclusive OR. The last change to the transi-

tions for x(j), where j < i satisfies this.

[4] This additional condition also ensures that the

clauses define a exclusive OR (see previous footnote).

However, removing "b" from the previous variables is

not sufficient since the characteristic of "n" is not

allowed either. Therefore, all variables prior to this

variable must have a "g" characteristic.
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"n" removed. [5]

A flowchart for Nil-sensitive propagation is shown

ures 24 and 25.

in fig-

B. Non-nil-sensitive operations:

If the variable is a parameter in a non-nil sensitive

operation, and if all parameters of the operation are

characterized (i.e., all have characteristics currently

associated with them), then the non-nil sensitive propaga-

tion rules are applied to separate the clause into three

types of clauses (i.e., for "g,b,n" characteristic outputs

of the function) according to the parameters' characteris-

tics:

Non-nil-sensitive propagation rules:

i. "G" clause:

Condition:

If all parameters have a characteristic possibility

"g", then:

of

Action:

Create a clause in which the result of the function is

assigned characteristic "g" and all parameters for this

[5] The number of clauses created by this algorithm

would be reduced if an a priori sorting of the variable

parameters would place those variables without "g"
characteristics ahead of those variable characteristics

with "g".
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clause are assigned characteristic "g".

2. "N" clauses :

Condition:

If all parameters have a characteristic possibility

"n, then:

of

Action:

Create a clause in which the result of the function is

assigned characteristic "n" and all parameters for this

clause are assigned characteristic "n".

3. "B" clauses:

Condition:

There is any parameter with a "b" characteristic, then:

Action:

Create a clause for EACH variable x(i) that has a "b"

characteristic in which the result of the function is

assigned characteristic "b", the variable x (i) is

assigned the characteristic "b", and assign all other

variables, x (k) where k > i, (according to some

predetermined ordering) retain their currently assigned

characteristics (i.e., no changes to these variable

characteristics). Further, remove from variables, x(j)

where j < i, the characteristic "b". [6] If any result-

ing variable sets are empty (i.e., the only charac-

teristic was "n" for that set),then remove the clause.
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A flowchart for Non-nil-sensitive propagation is shown in

figure 26 and 27.

C. Condition Propagation Rules:

There are three types of assumptions which may apply to

boolean comparators for equality (=) and inequality (<>).

These are:

I. _:_ <> [:b assumption: Assume that a variable that is "g"

is never equal to a variable that is "b". In other words, a

condition "x:g = y:b" always fails. Again, the equality of

two variables can not be determined without knowledge the

their values. However, most analysts assume that if a value

is corrupted by some failure, that it would not be equal to

another variable that was not corrupted. To verify that

this assumption holds, the following rule is defined:

Condition :

equality condition in the clause (x: (setl) = y: (set2))

where setl or set2 has "b" and the other set has "g".

Query:

y:b?

Can it be assumed that x:b <> y:g and x:g <>

Action:

Create 4 separate clauses:

[6] Note: Since no two clauses may address inter-

secting conditions (see section 3.1.2.2), the clauses,
must define a exclusive OR condition, instead of simply

a boolean inclusive OR. The last change to the transi-

tions for x(j), where j < i satisfies this.
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i. if "g" in setl then remove "b" from set2

2. if "b" in setl then remove "g" from set2

3. if "g" in set2 then remove "b" from setl

4. if "b" in set2 then remove "g" from setl

Eliminate duplicate clauses and clauses with setl

set2 = 0.

or

2. _:_ = Z:_ assumption: This assumption is common for com-

paring variables that relate to the same redundant component

type. It assumes that in comparing two variables that are

both "g" (i.e., not corrupted), the equality test will hold.

To verify that this assumption holds, the following rule is

defined:

Condition:

Inequality Operation (x: (setl) <> y: (set2)) where

and set2 have "g"

setl

Query: Can it be assumed that x:g = y:g?

Action:

Create 2 clauses:

i. if "g" in setl then remove "g" from set2

2. if "g" in set2 then remove "g" from setl

Eliminate duplicate clauses and clauses

set2 = 0.

with setl or
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3. _:b = [:b assumption: This assumption is often used as a

simplifying assumption to handle a worst case analysis. For

example, the analysis of a voter component that outputs the

majority of the inputs may assume a worst case scenario in

which all corrupted ("b") inputs have that same value, and

therefore, may outvote a "g" value. To verify that this

assumption holds, the following rule is defined:

Condition :

Inequality Operation ((x: (setl) <> y: (set2)) where setl

and set2 have "b":

Query: Can it be assumed that x:b = y:b?

Action:

i. if "b" in setl then remove "b" from set2

2. if "b" in set1 then remove "b" from set2

Eliminate duplicate clauses and clauses with setl

set2 = 0.

or

4. Nil comparison assumption: This assumption is the only

one applied to non-equality boolean comparators. As illus-

trated in the previous example, it assumes that a comparison

to a nil value always fails. The rule is defined as fol-

lows:

Condition:

Boolean comparators (=, <, >, <=,

set2 contain an "n" characteristic:

>=) where setl or
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Action

I. Remove "n" from the setl and set2

. Create a clause: N I {x: (n) } AND {y: (n)) where

{} indicates inclusion only if the variable has a

"n" characteristic.

These four assumptions have been identified as common

assumptions made by analysts. If further assumptions are

identified at a later time, interactive inquiries may be

added to this list. Further reductions are applied in phase

3.

4.4.3.2.2. Phase 2:

After all the substitutions and propagations have been

performed for the clause, the consequent part of the clause

(to the left of the I in the current functional definition)

is instantiated for each possible output characteristic.

There are three types of consequents to a clause: a func-

tion, a variable, or a single characteristic.

i. Characteristic: If the consequent is a characteristic,

then no instantiation is necessary.

2. Variable: If the consequent is a variable, then a

separate clause is created for each characteristic associ-

ated with the variable. For each new clause, the charac-

teristic is substituted into the characteristic set for that

variable, and the substitution/propagation algorithm is
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executed for the clause.

.

ate

(NS

substitution/propagation

clause.

Function: If the consequent is a function, the appropri-

function propagation rules are applied to the function

or NNS function propagation rules), and the

algorithm is executed for the

4.4.3.2.3. Phase 3:

After all clauses have been instantiated for the sen-

tence, the clauses are grouped, in phase 3, according to

common output characteristic. Next, the algorithm analyzes

each group pair to detect overlapping conditions between

output characteristics. After all overlaps between groups

have been eliminated, each group is analyzed to detect over-

laps within an output characteristic definition so that a

more concise OCD is defined. The previous example discussed

the motivation for eliminating overlapping conditions and

the heuristics used to resolve the conflicts. Therefore,

such information is not repeated in this section. After all

conflicts have been resolved within and between output

characteristic groups, the input characteristics are

separated from both the intermediate variable characteris-

tics and the internal boolean conditions. This is because

the final OCD for the subcomponent must define the output

characteristics of the function in terms of the input

characteristics and the state of the subcomponent. Refer-

ences to the state of the subcomponent are added in process
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L2 after all

OCDs.

failure and non-failure states have defined

4.4.4. PROCESS L2

Process L2 is called after process L1 has analyzed each

failure mode function and the non-failed function for a com-

ponent. The purpose of process L2 is to combine the OCDs

for each

ponent.

failure mode state into a single OCD for the com-

The algorithm for process L2

output characteristic, aeach

concatenating the failure mode state variable and

for the failure mode state into a single clause.

combined OCD is defined as:

is straightforward. For

combined OCD is created by

the OCD

Thus, the

OUTPUT (output characteristic)

IF (OCD in LI) AND (fault state)

OR {next fault state}

For example, recall the voter component of figure 8.

If two failure modes BAD, and NO-OP were also modeled for

the voter, process L1 would return the following OCDs for

each failure mode:

OUTPUT y:b

IF VOTER NOF TRANTO VOTER BAD;

OUTPUT y:n

IF VOTER NOF TRANTO VOTER NO-OP;
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The OCDs here are simplistic because in each case the

output characteristic is defined regardless of the input

characteristics. Nevertheless, this example illustrates how

the OCDs for different failure modes can be combined.

The OCDs defined for the voter under a non-failed state

were given in section 3.1, [12], and is repeated here:

OUTPUT y:n IF ALL(x(i) :n)

OUTPUT y:g IF #(x(i):g) > #(x(i):b)

OUTPUT y:b IF #(x(i):b) > #(x(i):g)

The combined OCD for y:g, y:b, and y:n is:

OUTPUT y:g IF #(x(i):g) > #(x(i):b) AND VOTER NOF

OUTPUT y:b IF (# (x(i) :b) > # (x(i) :g) AND

VOTER NOF) OR ({} AND VOTER_BAD)

OUTPUT y:n IF (ALL (x (i) :n) AND VOTER NOF)

OR ({ } AND VOTER NO-OP)

where the {} indicates that no input conditions existed for

that failure mode's OCD. Eliminating the {}, the new OCDs

are:

OUTPUT y:g IF #(x(i):g) > #(x(i):b) AND VOTER_NOF

OUTPUT y:b IF (#(x(i):b) > #(x(i) "g)

VOTER NOF) OR VOTER BAD

OUTPUT y:n IF (ALL(x(i):n) AND VOTER_NOF)

OR VOTER NO-OP

All OCDs may be combined in this way to produce

AND

a
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correct, combined set of OCDs for the component. This,

along with the transitions for each failure mode constitutes

the local reliability model that is returned.

In order to reduce the OCDs, heuristics may be applied.

Theses heuristics are based on semantic knowledge of the

condition variables (e.g., conditions X_BAD and X_NO-OP

refer to the same component failure mode and conditions x:b,

x:g, and x:n refer to the same variable characteristics).

With this knowledge OCD clauses may be combined and possible

conditions eliminated so that the resulting OCD is reduced.

Little work has been done at present on reducing the

OCD via these heuristics. However, one such heuristic is

defined.

This heuristic groups OCD clauses (in disjunctive nor-

mal form) according to common input characteristics (i.e.,

clauses that differ only by component state). If the group

of clauses represents all states for that component, then

the group may be replaced by a single clause with the input

characteristics only. Then, to maintain consistency, a con-

dition, AND NOT({input conditions}) is added to other

clauses. An example of this heuristic follows:

Given the OCD:

OUTPUT N IF ((r=0 OR r=l) AND XNO-OP)

OR ((r=l) AND XBAD)

OR (r=l and XNOF)
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change the OCD into disjunctive normal form:

r=0 AND XNO-OP [i]

r=l AND XNO-OP [2]

r=l AND XBAD [3]

r=l AND XNOF [4 ]

where [i], [2], [3],

Attempt to group

characteristic:

and [4] identify the new clauses.

the clauses according to a common input

r=0: Only clause 1 contains this characteristic,

states of component X are not referenced.

and all

r=l: Clauses [2], [3], and [4] can be grouped:

r=l and (XNOF,XBAD, XNO-OP)

Since all component states are represented in the

grouped clause, the group may be replaced by:

r=l

Next, the condition:

NOT (r=l)

which is equivalent to r=0 may be eliminated from the other

clause ([i]) so that the resulting OCD is:

OUTPUT N IF XNO-OP [I]

OR r=l [2-4]
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4.5. MODELREDUCER/ENCODER

The Model Reducer/Encoder converts the top-level relia-

bility model created by the Model Builder into an ASSIST

input file. The reliability model produced by the Model

Builder identifies all significant transitions as a result

of failure modes and system reaction to failures (i.e.,

FDIR) . Further, it defines the system states that represent

the undesirable condition analyzed. The encoding of this

model into-ASSIST syntax may be accomplished i_ a relatively

straightforward manner. However, ASSIST allows a rich set of

primitives in which several representations for the same

model are possible. The Model Reducer/Encoder applies

heuristics to optimize the ASSIST model, resulting in a

reduced SURE state space. For example, instead of modeling

separate transitions for each redundant component in the

system, the state vector includes one array element

representing the number of redundant components in each

state. Then, only one transition for each failure type need

be encoded for redundant components as a group. Further, it

looks for variables that might have been included in the

state space but are not required for a correct model.

The separation of the Model Reducer/Encoder from the

Model Builder also allows the flexibility to interface with

other Markov-based reliability evaluation tools.
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5. ENHANCEMENTS

This report describes a general mechanism by which

reliability models are generated from a functional and

structural specification of a candidate architecture design.

Further enhancements to this framework are conceivable.

First, an extension to the BBD/SYSD and their inter-

faces could allow assertions on the interrelationships

between components that are not directly defined as a func-

tional dependency. Consider a system in which devices com-

municate through a network of communication nodes intercon-

nected by redundant, spare links. Upon a network node

'failure detection, a network repair process is invoked to

enable spare links between the nodes so that no device

attached to the network is isolated. Instead of modeling a

specific implementation of the repair process, an "abstract"

model could be defined at an appropriate level in the BBD

hierarchy, whereby the effects of the repair are defined on

all subcomponents at that level. For example, the repair

abstract model could state that after repair, only devices

directly connected to the failed link or node are isolated.

This assumes that there are enough spare links in the net-

work that network repair will be able to successfully recon-

figure all intermediate node and link failures. The

"abstract" model differs from a component model defined in

the BBD in that the abstract model specifies changes to many

components, whereas a component model BBD is localized for

that component. Using abstract models allows a user to
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specify changes to the system without defining the implemen-

tation of components that bring about the change. This is

useful at early stages of the design when implementation

details are not well defined, and at later stages when a

more compact model is analyzed. The disadvantage of

abstract models is that they constitute assumptions on the

interaction of components that may not be supported by the

implementation. Their use, therefore, should be noted (with

all other assumptions) in the final model.

Second, as previously stated, reliability analysis

should be performed at all levels of a design. Typically,

several levels of functional requirements exist above the

highest level at which hardware components are defined.

These levels describe what requirements exist (e.g., engine

control, flight control, propulsion, etc.). Each require-

ment is decomposed into subrequirements, until at some point

in the design, implementation decisions are made that map

the requirements into hardware components and a configura-

tion description. At present, the designer analyzes this

level of the hierarchy manually to determine the correspond-

ing component functional requirements. An automated

approach incorporates into the SYSD a hierarchy of system

level requirements above the component configuration. The

format for these requirements could be expressed as logical

conditions, or assertion, on the required operations (for

example, at least two engines are required for safe flight).

Each requirement would be decomposed into subrequirements
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until an implementation is defined to meet the requirement.

The Reliability Model Generator could then trace a high

level requirement to the component functions that implement

the requirement and generate the corresponding reliability

model for a top level functional requirement. Figure 8

illustrates this additional level of the SYSD.

Third, allow the user to specify local reliability

models for some components, and then use the Local Model

Generator to generate local reliability models for com-

ponents for which no local reliability model has yet been

defined. (The present algorithms assume the the Local Model

Generator defined local reliability models for all com-

ponents at the lowest level).

Finally, the development of the Reliability Model Gen-

erator is part of an ongoing effort to support the design

and analysis of highly fault-tolerant control system archi-

tectures suitable for high-performance aircraft of the 1990s

and beyond. Figure 9 illustrates a long-term plan to incor-

porate analysis tools into the design and evaluation of

highly fault-tolerant systems. The Reliability Model Gen-

erator is an integral part of that plan. Another similar

tool is envisioned to map a block diagram for a system into

the performance models required for simulation studies of a

candidate architecture. A third tool is needed to aid in

the synthesis of a configuration, given a building blocks

architecture and a set of requirements for the system. The

three tools should be integrated into a uniform environment
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with common interfaces among them.
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APPENDIX A: Changes to algorithms since 9/87

The algorithms for both RMAS and the LMG are listed in

appendix B. However, because the algorithms have changed

since they were presented to NASA Langley on September I0,

1987, appendix A lists the changes that were made to the

algorithms. Appendices C and D include traces of the algo-

rithms for two example configurations.

The following is a list of changes that have been made

to the algorithms since they were presented to NASA Langley

on September i0, 1987.

A.I Separation of RMAS and LMG

As discussed in section 3.1.2.4, earlier designs of the

Reliability Model Generator did not distinguish the Local

Model Generator from the Reliability Model Aggregation Sys-

tem. Rather the global model was generated coincident to the

failure modes effects analysis (FMEA) . Refer to that sec-

tion for a discussion of the motivation behind that change.

Reference [i] for a high-level description of the process

flow in the combined approach. Because of this separation

the new algorithms have been separated as follows:

OLD PROCESS

Process 1

Process 2

Process 3

Process 4

Process lx

Process 2x

Process 3x

NEW PROCESS

Process I1 in LMG

Combined with Process II in LMG

RMAS process (includes elements
of old Process 1 and 2 to

organize trace)

MODEL REDUCER/ENCODER

Deleted, see next section

Process L1 in LMG

Process L2 in LMG

Also, the process names are now prefixed with an "I" or

an "L" to indicate intermediate or lowest level processes.

A.2 Deletion of Process ix

The failure mode specification was defined as a change

to the function that occurred when the component failed.

The purpose of process ix was to change the function defini-

tion for the component according to a failure mode specifi-

cation. However, it has since been decided that the user

can specify the failure mode as a new function thus elim-

inating the need for process Ix to define the new function.

Since most failure modes are defined by their effect on the

outputs of the component, this specification is straightfor-
ward.
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A.3 Changes to RMAS module (previously Process 3)

. Because the RMAS module has been separated from the

other processes, additional statements were added to

the module to maintain the hierarchical flow of the

RMAS module. This was previously performed by

processes 1 and 2. In order to accomplish this, when

the module is invoked for an intermediate level com-

ponent (parent), the subcomponent that generates the

parent's output is defined from the BBD for the parent.

Then an RMAS module is invoked recursively for that

subcomponent which returns a reliability model of its

structure (which may include analysis of subcomponents

also). Consequently, statement A0 of the RMAS module

has been added to invoke the hierarchical structure of
the RMAS modules.

, Besides recursive invocation of RMAS modules for inter-

mediate level components, the RMAS processing for

intermediate level models has been changed as follows.
The transitions returned for intermediate level models

may contain conditions that are not referenced in the

OCDs for the models. Thus, in order to trace all

effects of a given output characteristic for the inter-

mediate level component, the conditions for the transi-

tions must be analyzed also. This is explained in

detail in section 3.3.2.7. Prior to this change, an

intermediate level model was simply returned by task 2

of the RMAS. This change does not affect the validity
of the traces in appendices B and C since the transi-

tions returned from the intermediate models did not

contain conditions that were not referenced in the OCDs

for the intermediate level models.

o The naming of data structures TO BE ANALYZED,

BEING ANALYZED and HAS BEEN ANALYZED that were used to

maintain an order of analysis of conditions has been

changed to FUTURE CONDITIONS, PRESENT CONDITIONS, and

PAST CONDITIONS lists (or FUTURE, PRESENT, and PAST for

short).

. The names of the tasks within this module have been

changed. What was called %:ANALYZE COMPONENT is now

known simply as Task i, and wha--t was called

@:ANALYZED_CONDITION is now known as Task 2. The sym-
bols % and @ were used as a shorthand reference to

these tasks in the detailed traces of appendices C and

D. Also, the algorithm statements were numbered for

reference in the traces. These symbols will remain in

the new algorithms in appendix B along with the same

numbering convention.

° The OCD model combination rules for option 2 (see sec-

tion 3.3.2.3) were changed to nested transitions. The
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motivation for this is as follows. Recall the example

given in section 3.3.2.3, figure 14. The old rules for

option 2 would have created a combined OCD and transi-
tion:

AGGREGATE OCD for parent of A and B:

OUTPUT y:b IF x:b and q:b and A FAIL

IF B NOF and w:b TRANTO B FAIL, x:b

Here, the condition part of the transition is appended

with the extra condition "w:b" and the consequent part

of the transition is appended with "x:b". This is
incorrect in the case where B NOF is true and w:b is

not, since the transition to state B FAIL, that should

occur, would not. The correct transition is one in

which the condition B NOF alone determines if the tran-

sition to state B FAIL is possible, and then the added

condition w:b determines if a transition to x:b is pos-

sible also. This is reflected in the transition change

presented for option 2 in section 3.3.2.3:

AGGREGATE OCD for parent of A and B:

OUTPUT y:b IF x:b and q:b and A FAIL
IF B NOF TRANTO B FAIL

IF w:b TRANT0 x:b

ENDIF;

A.4 Changes to Process L1 (previously Process 2x)

I . The delineation of three phases for the process was not

defined in the previous algorithms. The phases were

introduced as a natural way to explain the parts of
Process LI.

. Procedural Verses Non-procedural Functions: In the pre-

vious version of the algorithm, a clear distinction was

made between procedural and non-procedural function

specifications, which were defined as Type A and Type B

functions respectively. Section 3.1.2.2 discussed the

distinction between these two function types. Upon

reexamination, it became apparent that the algorithm

performed similarly for Type B functions as for Type A
functions where the element to the left of the "I" was

a variable. That is, in both cases, each possible

characteristic for the output variable is instantiated,

and a new set of clauses is defined. The only real

distinction between the two cases, then, is the pres-

ence of quantifiers for non-procedural specifications.

Therefore, the code for the two cases was combined so

that there is not a separate processing for each.

Rather, when a variable is present on the left side of
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,

the "I" sign, the processing is the same except for the

handling of quantifiers, if any exist. Refer to sec-

tion 3.4.3.2.2 for a complete description of phase 2.

Propagation Rule Changes: The condition propagation

rules that were performed in the previous algorithm

were not sufficient to cover all cases. These propaga-

tion rules were based on the assumptions that:

I . A variable whose characteristic is "g" is equal to

another variable whose characteristic is "g",

o A variable whose characteristic is "b" is equal to

another variable whose characteristic is "b", and

3. A variable whose characteristic is "g" is not

equal to another variable whose characteristic is
"b"

From these assumptions, the propagation rules were

defined to automatically eliminate combinations of

variable characteristics which would violate these

assumptions. For example, the rule:

Condition:

varl: (SETl)=var2: (SET2)

Action:

IF SET1 is 0 THEN varl: (SET2)=var2: (SET2)

IF SET2 is 0 THEN varl: (SETl)=var2: (SET1)

ELSE varl (SET1 n SET2)=var2 (SET1 n SET2)
eliminated from the characteristic set all combinations

that violated the assumptions above.

Although these assumptions were applicable for the

traces given in appendices B and C and are applicable

in most all cases, there may be situations in which one

or more of these may not hold. Therefore, the propaga-

tion of characteristics through conditions such as =,

<>, etc. is currently performed interactively with the

user, as discussed in section 3.4.3.2.1 and section

3.4.3.2.3. Further, the three assumptions listed

above, which will apply in most cases, are the first to

be verified by the program.

This change makes the Reliability Model

more comprehensive analysis tool.

Generator a

Overlaps: The handling of overlaps within and between

characteristics was solidified into a procedural defin-
ition that was discussed in section 3.4.3.2.3. Prior

to this, the general procedure was introduced and

illustrated for a example, but the exact algorithm was

not defined. (The traces that were performed in appen-

dices B and C did not result in overlapping
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conditions.) Further, because of the need to verify

assumptions (previous item) with the user interaction

with the user was added in the algorithms for resolving
conflicts.

A.5 Chanqes to Process I2 (previously Processes 1 and 2)

i , As stated in item i, processes 1 and 2 were combined

into a single process II.
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APPENDIX B : ALGORITHMS

The following is a listing of the pseudocode for the

rithms. It is organized as follows:

algo-

A. USER INTERFACE: This describes the features of the

proposed interface.

BBD INTERFACE

SYSD INTERFACE

B. RELIABILITY MODEL GENERATOR

, RELIABILITY MODEL AGGREGATION SYSTEM: This pro-
cess is identified here and elaborated on at the

end of the appendix.

2. LOCAL MODEL GENERATOR

PROCESS Ii

PROCESS LI: This process is identified here

and elaborated on at the end of the appendix.

PROCESS L2

C. MODEL REDUCER/ENCODER

RELIABILITY MODEL AGGREGATION SYSTEM:

separately

PROCESS LI: algorithm listed separately

DATA TYPES

algorithm listed
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A. USER INTERFACE

BBD INTERFACE

INPUT: Graphical, interactive

OUTPUT: (I) Building Block Definition - BBD

PROCESS: Convert user friendly templates to

interactive input, graphical

BBD;

o Automatically create subcomponents' BBD spec shell

from subcomponent interaction field of parent

o BBD editor has compiler that checks: input/output

function consistency, etc. , primitive spec( no

missing ;)

3. alter at will:

o generic failure modes such as no-op and bad-data

that can be created for a function by just speci-

fying the name, and the editor fills in the
details

. Availability of a set of macros and operation for

user friendly functional specification. Availa-

bility of a mechanism to create and edit macros.

See also Reliability Model Generator User's Guide, June

15, 1988.
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Ao USER INTERFACE (cont.)

SYSD INTERFACE

INPUT: Graphical, Interactive

OUTPUT: (2) System Definition - SYSD

PROCESS:

° Identifies individual components of the configura-

tion by:

- individual name for each component

- reference component type (name of component

in BBD)

° Identifies interdependencies of components (con-

nectivity) if not already specified in BBD as
standard connection

. System fills in what it know of component from BBD

and queries for additional information needed:

- # of each redundant sub

- other connections it needs

° Determines lowest level and highest level of func-

tional abstraction to be analyzed.

o System looks for faults at lowest level - if none,

queries
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B. ANALYZE PROCESSES:

RELIABILITY MODEL AGGREGATION SYSTEM:

INPUTS:

(i) BBD

(2) SYSD

(3) trace tables of subcomponents

(5) Local Reliability Models for Lowest Level Com-

ponents

OUTPUT:

(5) Top-level reliability model for system

PROCESS: defined separately at end of appendix
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B. ANALYSIS PROCESSES (cont.):

LOCAL MODEL GENERATOR

INITIALIZER:

GIVEN:Unreliable condition references component output:

already defined high level component to instan-
tiate

PROCESS:

IF LOWEST LEVEL REACHED

definition - SYSD)

(look at configuration

INSTANTIATE PROCESS LI,

ELSE INSTANTIATE PROCESS Ii
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B. ANALYSIS PROCESSES (cont.) :

LOCAL MODEL GENERATOR (cont.):

PROCESS Ii:

I. FMEA - TRACE SETUP:

INPUT: (I) BBD

(3) Function to trace given by parent

(3) Input Characteristics

INTERNAL DATA STRUCTURES:

(4) Priority Queue

(3) subfunction trace tables

PROCESS:

Based on functional Flow, identify order of sub-

functions to trace. Maintain order in priority

queue (6). For each subfunction, identify outside
effects relevant to subfunction

IF function to trace has not been analyzed OR

IF input characteristics have not been analyzed

I . sets up subcomponent trace tables:

a. from BBD, identify each subcomponent

involved in given function

b. input characteristics for each subcom-

ponent

o set up priority queue by referencing subfunc-

tion and determining order of subcomponents
to trace

DETERMINE ORDER:

RI. IF a;b order(a,b) where a and b are

component

R2 ° For cyclic subprocesses: (determined by

'cyclic' in function)

I , Find ending point (subcomponent
whose effects are seen outside

o Find starting point (subcomponent

whose inputs come from outside)

, Must loop trace until no new
effects are found (or maximum

number of failures considered)

R3. For fully redundant subcomponents,
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analyze only once (full redundancy

requires identical inputs and trace his-
tories.

Loop until (output of parent reached and no

subcomponents on priority queue)

A. TAKE TOP ELEMENT OFF QUEUE Pass input

characteristics to subcomponent process

B . Upon return of subcomponent module:

Update input characteristics of trace

tables for affected subcomponents based

on OCDs of subcomponent module just
returned

for parallel functions, give common
characteristics

- ex. FA x(i) of P(n) char =

{.°.}

- Heuristics to Ignore Irrelevant

Effects

- based on likelihood

- based on number of failure

modes in history
- based on redundant information
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B. ANALYSIS PROCESSES (cont.):

LOCAL MODEL GENERATOR (cont.):

PROCESS LI:

ANALYZE ALL COMBINATIONS OF FAULTS AND OUTSIDE

ON FUNCTION

INPUTS:

OUTPUTS:

ponent

PROCESS:

EFFECTS

(3) input characteristics

(5) Local reliability model for this com-

Defined separately at end of appendix
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B. ANALYSIS PROCESSES (cont.) :

LOCAL MODEL GENERATOR (cont.):

PROCESS L2:

DEFINE LOCAL RELIABILITY MODEL: called after process L1

has been performed for all fault behaviors

i. If there are no input characteristics considered,
add no-fault state:

STATE GOOD IF x_NOF {where x is component name}

o Combine conditions for every unique output charac-
teristic

STATE (output characteristic)

IF (OCD in LI) AND (fault state)

OR {next fault state}

3. REDUCTIONS:

I. Reduce STATE description where () is null

The following are heuristic that can reduce

the number of fault conditions considered

when an output characteristic is primarily
input characteristic driven:

i. put in Disjunctive Normal Form

° group clauses according to common input
characteristics (* in other words

clauses that differ only by component
state *)

. for each group: if all state possibili-

ties represented in clauses:

replace group by single clause with

input characteristics only

eliminate ^(input characteristic)
reference in other clause

Example :

OUTPUT N IF ((r=0 OR r=l)

AND XNO-OP) OR ((r=l) AND

XBAD )
OR (r=l and XNOF)

i o r=0 AND XNO-OP [i]

r=l AND XNO-OP [2]
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r=l AND XBAD [3]

r=l AND XNOF [4]

2. for r=0: not fully redundant

° for r=l: r=l and (XNOF,XBAD, XNO-

OP) [2-4]

- fully enumerated component state

- reduce [2-4] to r=l

- eliminate r=0 from [I]

RESULT:

r=l OR XNO-OP

return to parent
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C. MODEL REDUCER/ENCODER

INPUTS:

(7) Reliability Model from Top level component

OUTPUTS:

(8) RELIABILITY

TOOL)

MODEL (ENCODED FOR RELIABILITY

PROCESS:

This process uses techniques to reduce the number

of states generated The number of states generated

by the model is dependent on the # of transitions

and the number of possible states from which the

transitions may occur. Both the Reliability Model

created by the foregoing processes and the reduced
model created here should be accessible to the

analyst, because with model reduction comes a loss
of information

i. Truncation: truncate the model after the xth

failure level

can be added to model as separate state vec-
tor element and additional condition of death

state

2. Pruning: do not consider faults or failure

sequences that are unlikely.

° Heuristics: these are the 'tricks' that has been

applied in manual model generation. The model

inputed to this process contains semantic informa-

tion about the components that may be exploited to

reduce the model. Examples of semantics:

o P BAD, P NO-OP : identifies these two vari-

ables as relating two the same component P

and also relating to a fault state of the

component P. Heuristics may under some
situations combine these variables into one

variable for component P

o y: (g), y: (b) : identifies an output charac-

teristic for y Heuristics may under some
situations combine these variables into one

variable for y. They may also be able to

combine with the component that depends on
the variable.

Examples of Heuristic application:

i. IDENTIFY SUPERFLUOUS VARIABLES:
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a. FOR EACH change in changes:

IF the change is not referenced in the

condition part of other transitions

AND NOT in the overall death

definition for the component

state

THEN mark those variables as superfluous

(i.e., not needed)

b.

C o

COMBINE superfluous variables (with same com-

mon prefixes and suffixes of the component

referenced) into one variable characteristic

(called ANYOF)

Change all references to the superfluous

variables to ANYOF

Ex: In example2 PiBAD and PiNO-OP are super-

fluous so P ANYOF(Bad, Nil) is substi-

tuted in

d, IF the only state for a component or data

characteristic for a variable is ANYOF,

THEN its reference may be eliminated (at the

expense of possible loss of information in

the resulting model)

. FOR REDUNDANT COMPONENTS :

IF Xi NOF is only cited as a precondition for
transition

AND all other states of X are superfluous,

THEN

any

a o create a variable counter (#XNOF) and substi-

tute #XNOF for all occurrences of IF

x (i) __NOF,

b. add X #XNOF to rate

C ° substitute #XNOF=#XNOF-I in for

variables in that transition.

other superfluous variables

superfluous
Get rid of

ENCODING RELIABILITY MODEL INTO RELIABILITY ANALYSIS TOOL:

EXAMPLE: ASSIST

STATE VECTOR ELEMENTS:

I . The state vector element for each component state is

created. The number of values possible for the element

will equal the number of states for the component with

B-12



.

o

value 0 being the NOF state. For redundant components
the SYSD will determine the number of individual com-

ponents to be represented.

Ex. B[0..I] (* 0=BNOF, I=BNO-OP *)

For operations, the model for the operation determines

the way it will be represented. For example, the model

for the operation, #:

MODEL : ALL (<cond>)

COI: <cond>

Change rep: #(<cond>)=?get max(obj) from BBD

where obj is component (or component of data)
in <cond>

Contributory transitions :

replace IF (<cond>)

with IF #(<cond>) = Max(obj)

replace TRANTO <cond>

with TRANTO # (<cond>) =# (<cond>) + 1

Detractory transitions:

replace <cond>

with #(<cond>)=# (<cond>) - 1

ASSIST CONVERSION: #(<cond>) : [0..max(obj) ]

For variable characteristics, create a state vector

element similar to the vector elements for component

states.
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DATA TYPES:

1. Building Block Definition (BBD) : The BBD is the internal

representation Which contains a-----hierarchical representation

of the components so that the functional flow may be traced

and various levels of detail may be analyzed for different

failure conditions.

FUNCTIONAL SPECIFICATION:

ponent which identifies

tionship between them.

the functional flow of the com-

its inputs, outputs and the rela-

STRUCTURAL REQUIREMENTS: Specifies what configurations of

BBD components are allowed and what configurations aren't
allowed.

NEXT LEVEL VIEW: For high level components, this identifies

the subcomponents involved in the functional specification,

and their interaction relationship.

FAILURE MODE SPECIFICATION: This specifies the manner in

which a component may fail in terms of its effects on the

data that comprise the function. Any data value may be set

to the characteristics b (bad or corrupted in some manner)

or n (non-existent or not available on time) For example,

the following faults may be modeled:

b

data: corrupting input port

able on time

n input

disabled input port

input not avail-

internal data: bad function disabled function

output data: corrupted component

corrupted port

disabled component

disabled port

2. System Definition (SYSD) : Defines configuration

components for a candidate configuration.

of BBD

Configuration Definition:

a. BBD instantiations: user can specify:

i. Components BBD name: BBD type reference

2. Lower level to specify for named component

System fills in what it know of next level

and queries for additional information needed

- # of each redundant sub

Other connections it needs
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3. Interconnections between specified components

3. Trace Table: one for each

level of abstraction

functional process at each

i Input i

Function i Char. I

I I
I I
I I

Function: particular function involved in trace

Input characteristics: any relevant effects of

components on this function

other

4. Priority Queue: Contains an ordering of subfunctions to

be traced. Primarily ordered by functional flow; but con-

tains arbitration ordering for parallel subfunctions, or

possibly other heuristic to limit tracing complexity.

subcomponent I priority

i

5. Local Reliability Model: One for each functional process

at each level of abstraction; For the highest level com-

ponent, this is the primary analyzer (ASSIST).

OUTPUT DEFINITION

OUTPUT <output var>:<char> IF <cond>

TRANSITIONS:

IF <cond> TRANTO <cond> BY <rate>

... BY T<cycle>

<char> :: g I b i n

<cond> :: <op>(<cond>) I <cond> OR <cond> J <cond> AND

<cond>

I <input var>:<char> I <fault>

<input var>,<output var> :: <var>
<var> :: lower case

<fault> :: <compname>-<var>

<compname> :: upper case

<op> :: # i ALL i ... for all defined operations
<rate> :: <fault> RT

<cycle> :: {<compname>}+ (* one or more component

names *)

(6). Reliability Analysis Tool syntax : (ASSIST)
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RMAS

; ; NOTE :

;;

;;

;;

++ n ++ (where n is a number from I to 7) indicates

a reference to an explanation of the reasoning involved

in this part of the algorithm. The explanations are in

a file called RMAS.discussion.

RMAS (COMP)

;; where COMP is the parent component

TOP: FOR EACH OF COMP'S OUTPUTS

I. find the subcomponent that outputed data (SUB)

FOR EACH SUBCOMPONENT OUTPUT CHAgJ%CTERISTIC DEFINITION (OCD) :

i. put condition on BASE list

2. establish COMP's initial OCD:

OUTPUT <CHAR> IF <outputing subcomponent condition>

3. call %:ANALYZE COMPONENT (COMP SUB CHAR)

%:A/_AJJYZE COMPONENT (COMP SUB CHAR)

;;DEFINITIONS:

;;

;;

;;

;;

t r

r F

;;

f r

• r

;;

;;

;;

F r

;;

r •

;;

;;

;;

;; i.

;;

;;

;; 2.
;; 3.

r s

- TASK 1

CHAR references output characteristic for component SUB

where COMP is parent of SUB

DEFINE:

Output Characteristic Definition (OCD) :

OUTPUT <CHAR> IF <condition>

PROCESS FLOW:

IF COMP is intermediate level: call RMAS submodule to define

reliability model for that level. Then interrogate this module

to find transitions that contribute to input conditions for

component

ELSE

Find the transitions that contribute to output characteristic by

calling @:ANALYZE CONDITION recursively to find the transitions

that contribute and detract from each condition in the OCD for

CHAR. This involves a trace the OCDs of all components that

are subcomponents to COMP until the inputs of COMP are reached

or a cycle is detected. When a cycle is detected, this procedure

determines if the cycle involves a non-fault (recovery) transition

disect OCD condition into disjunctive normal form clauses (DNF)

and determine which conditions in each clause must be analyzed

- see case statements

call @ANALYZE COND (cond) for each cond to be analyzed

some transitions returned will be altered to account for states

of other clauses (see case statements)
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%:ANALYZECOMPONENT(COMPSUBCHAR) - TASK1
A. IF SUBis a parent component:

++ 7 ++ 0. Invoke RMASmodule for subcomponent. Returns local reliability
model UPONRETURN:

a. For each CLAUSEin new COND(separated by OR)
i. if any cond is on PRESENTCONDlist - (ignore clause)

(trace was a cycle from which no transitions were found)

++ i ++

++ 1 ++

++ 5 ++

++ 5 ++

++ 7 ++

++ 1 ++

++ 7 ++

2.

3°

if any conditions are on the 'PAST COND' list:

I. substitute BASE equivelents in for logicals

2. call DNF (CLAUSE) - disjunctive normal form

apply the appropriate case statements to CLAUSES to define

a list of conditions to analyze:

(analyze clauses involved in substitutions first)

case I: OUTPUT cond IF cond:

I. Ignore clause: (condition substituted is equivelant

to the condition being analyzed under %)

2. any transitions found for other CLAUSES must

include IF ... AND ^cond . . . TRANTO . ..

(with the exception as noted in case3, #2)

case 2: OUTPUT cond IF cond AND A:

;; A is the remaining conditions in the clause

I. ignore clause (conditions in A are not analyzed)

2. any transitions found for other CLAUSES must

include IF ... AND ^cond ... TRANTO ...

case 3: OUTPUT cond IF ^cond

I. add a non-fault transition:

IF ^cond TRANTO cond BY T(CYCLE)

case 4: OUTPUT cond IF ^cond AND A

I. add a non-fault transition:

IF A AND ^cond TRANTO cond BY T(CYCLE)

2. call @ANALYZE COND(cond) for conditions in A

satisfying 1 _f case 5 (transitions returned NOT

subject to stipulation 2 of cases 1 and 2)

case 5: OUTPUT cond IF {conditions that excludes cond}

i. call @ANALYZE COND(cond) for input conditions that

are not on 'PAST COND' or 'PRESSENT COND' list

2. apply stipulations that exist from Uther clauses

to transitions returned (case 1 and 2, #2)

3. For each SUB STATE or SUB IO COND (not parent I/O)

a. for each transition in CTL for condition

i. for each INPUT CONDITION condition found in

condition part of transition

a. if INPUT CONDITION already analyzed

i. if INPUT CONDITION is logical

- substitute in BASE equivelant

(MODEL COMBINATION 1 was used in

analysis of INPUT--CONDITION for OD)

2. if INPUT CONDITION--is BASE - do nothing

(MODEL COMBINATION 2was used in analysis

of INPUT CONDITION--for OD)

b. if INPUT CONDITION not analyzed

I. analyze (call % INPUT CONDITION)

2. substitute using MODEL COMBINATION 1

- should always be able to perform--this
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%ANALYZE COMPONENT (COMP SUB CHAR)
B. ELSE

++ 1 ++ 0.

a.

++ 1 ++

++ I ++

++ 5 ++

++ 5 ++

++ i ++

- continued

call DNF (OCD) to change OCD to distunctive normal form

For each CLAUSE in new OCD (separated by OR)
DEFINE: CLAUSE = condl OPI cond20P2 cond3 ... OPn condn

OPi = One of (AND, >, <, =)

i° if any cond is on PRESENT COND list - (ignore clause)
;; the trace resulted in a cycle from which no
;; transitions were found - return

2. if any conditions are on the 'PAST COND' list:

i. substitute BASE equivelents in for logicals
2. call DNF (CLAUSE) to change to distunctive normal

form

3. apply the appropriate case statements to CLAUSES to define

a list of conditions to analyze:

(analyze clauses involved in substitutions first)
case i: OUTPUT cond IF cond:

i. ignore clause

;; If condition substituted in is equivelant to

;; the condition being analyzed under %, ignore
;; this clause - no transition found

2. any transitions found for other CLAUSES must
include IF ... AND ^cond . .. TRANTO ...

(with the exception as noted in case3, #2)
case 2: OUTPUT cond IF cond AND A:

;; A is the remaining conditions in the clause

i° ignore clause (conditions in A are not analyzed)

2. any transitions found for other CLAUSES must
include IF ... AND ^cond ... TRANTO ...

case 3: OUTPUT cond IF ^cond

i. add a non-fault transition:

IF ^cond TRANTO cond BY T(CYCLE)
case 4: OUTPUT cond IF ^cond AND A

i. add a non-fault transition:

IF A AND ^cond TRANTO cond BY T(CYCLE)

2. conditions in A satisfying 1 of case

5 are analyzed - call @ANALYZE COND (cond)

-the transitions returned are NOT subject to

stipulation 2 of cases 1 and 2

case 5: OUTPUT cond IF (conditions that excludes cond)

i. analyze conditions (@ANALYZE COND(cond)) that are
not on 'PAST COND' or 'PRESSENT COND' list

2. apply stipulations that exist f_om other clauses
(case 1 and 2, #2)

B-18



%ANALYZECOMPONENT(COMPSUBCHAR) - continued

4. for each condition to be analyzed: establish order of
analysis and call @ANALYZECOND(cond) :

- analyze component states first (B in @ANALYZECOND)
- then simple input conditions (A and C in @ANALYZE COND )

- then predicate input conditions (D in @ANALYZE COND )

- put conditions on 'future' list

END (% :ANALYZE__COMPONENT)
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@:ANALYZE CONDITION (COND COMP) : FIND TRANSITIONS THAT

CONTRIBUTE TO CONDITION: - TASK 2

; ; SUMMARY:

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;; C.

; ; ++ 3 ++

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

; ; ++ 2 ++

;;

;;

; ; ++ 4 ++

;;

;;

;;

;; 2.

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;; 3.

;;

Find the transitions that contribute to COND.

This is called recursively by %ANALYZE COMP to trace an output

characteristic thru all subcomponents _ntil the inputs of the parent

are reached or a cycle is detected.

i. tracing the source of the condition of COMP to find transitions:

Possibilities for each condition and action taken as a result:

A. Conditions on PRESENT COND, or PAST COND lists: ignored

B. Condition based on state of COMP: --

fault or nofault case

- transitions found for faults, and

- input characteristics of COMP are established as bases

conditions based on inputs:

i. conditions based on some input predicates

- find simple input characteristics on which the

predicate is based

- call @ANALYZE CONDITION to find transitions that

affect these simple conditions

- change transitions found to reflect predicate

2. conditions based on a simple input characteristic

-call %ANALYZE COMPONENT for component that outputed

to this component

(input condition becomes output condition in new

component )

- change the transition returned to reflect the

variables in the OCD or change the OCD to reflect

the variables in the transition (see #2)

3. change transition to reflect a detraction to

any previously defined bases

4. change previously defined transitions to reflect

detraction from newly defined bases

applying rules to convert transitions to reference variables

defined by output definition

- establish set of BASE variables from which all transitions

are defined - assume all variables are bases unless they

can be eliminated by an equivelent relationship among other

varialbles (this is done in MODEL COMBINATION i)

- a condition is put on BASE list--

i. for each component state for components that can fail

2. for conditions involved in non-fault transition.

- rewrite or add to transitions found any changes in established

bases

- establish logicals for other data characteristics not defined

in terms of bases so that when referenced again, the base

equivelent may be substituted

for each set of transitions found from @:ANALYZE CONDITION update

the contributory transitions list (CTL) for that to condition
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@:ANALYZE CONDITION (COND COMP) :

++ 6 ++ A. If condition is on PRESENT OR PAST COND lists - ignore

NOTE: this test was put in %:ANALYZE COMPONENT instead of here

so as to avoid a procedural call, but is still included here
to be consistent with traces

So FOR CONDITIONS BASED ON COMPONENT STATE (fault or nofault) :

i. take condition off 'future', put on 'PAST COND' list.

2. add transition to queue of transitions that contribute to
condition

3.

4.

Transition: IF subname NOF TRANTO subname fault

add fault to BASES list

add condition of %:ANALYZE COMPONENT To logical (not

needed if subcomponent outputs to outside world

- represented as output definition instead)

++ 3 ++

C. FOR CONDITIONS BASED ON INPUTS:

i. take off 'future', put on 'PRESENT COND' list

2. If condition is based on input predicates:

{* condition = PRED(...) for some PRED = predicate

(* for ex: MAX(x(i)), AVE(x,y), #(<cond>)

look at model for predicate:

I. if representation changes:

a. if condition is a base: replace base with new

representation on base list

b. add representation to list of conditions to analyze

c. call @:ANALYZE CONDITION with new rep

I. add transitions found to contributing
transition list (CTL) for this condition

d. move condition (old and new rep) to 'PAST COND' list

2. (Rep not changed ) define input condition(s) of
interest (COI) - add COI to BASES list

a. add to list of input condition(s) to be analyzed
b. call @:ANALYZE CONDITION with each condition

I. evaluate transitions and/or output definition

according to rules (contained in model for

predicate)
2. add transitions found to CTL for this condition

d. move condition to 'PAST COND' list

ELSE go to 3.
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@:ANALYZE CONDITION (COND COMP) : - continued

++ 2 ++

++ 4 ++

C° 3. FOR SIMPLE INPUT CONDITION ( not based on predicate )

(FIND transitions that contribute to input characteristic)

i. Determine which component (OUTPUT COMP) outputed this

condition to the current componen_ (CURRENT_COMP)
- (look at BBD/SYSD) :

DEFINE CURRENT COMP and OUTPUT COMP as referenced

a. if OUTPUT COMP is PARENT (defined in TOP) - return

b. if OUTPUT_COMP is another subcomponent

- call %:ANALYZE_COMPONENT(OUTPUT_COMP cond) for

component that outputed data

;; input condition becomes output condition in new
;; component

2. matching output definitions and transitions:

a. for non-fault transitions returned - no changes
b. if cond not on BASE list (not COI for a predicate)

or not input to faulted component:
call MODEL COMBINATION 1

- if not s_ccessful - _all MODBL COMBINATION 2

c. IF COI for an predicate -- --
- call MODEL COMBINATION 2

3. move condition _o 'PAST COND' list

4. if condition is a BASE, perform #FIND DETRATIONARY EFFECTS

END (@ :ANALYZE_CONDITION)
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MODEL_COMBINATION_I(CURRENT_COMP, OUTPUT COMP condition)

++ 2 ++

i. define condition (% cond just called)

as logical according to output characteristic definition returned

from OUTPUT COMP and take this condition off BASE list

2. replace condition in parent's output characteristic definition (OCD)

with condition in OUTPUT COMP's output definition

3. No change to OUTPUT_COMPTs transitions

MODEL_COMBINATION_2 (CURRENT_COMP, OUTPUT_COMP condition)
++ 2 ++

;; USE RULES TO TRANSLATE TRANSITIONS FOUND INTO TRANSITIONS THAT

;; REFERENCE OUTPUT DEFINITION:

Current comp: OUTPUT . .. IF . .. AND/OR P . ..

want to keep reference to P, so when OD for

P returns from another comp (OUTPUT COMP) that outputs P,

change transitions returned from OUTPUT COMP

to transitions that

explicitely tranto P

OPTION i. GIVEN: OUTPUT P IF A AND B

for all transitions found: IF q TRANTO A and r

substitute IF q TRANTO A and r

IF B TRANTO P

ENDIF

for all transitions found: IF q TRANTO ^A and r

substitute IF q TRANTO ^A and r

IF B TRANTO ^P

ENDIF

OPTION 2. GIVEN: OUTPUT P IF A OR B

(* Note here that in order to define a transition to P,

P must not already be true, and therefore, a transition

to A causes a transiton to P ONLY IF B is not already

true - thus, the logical OR in output definitions must

be changed to logical XOR in transitions. *)

for all transitions found: IF q TRANTO A and r

substitute IF q TRANTO A and r

IF ^B TRANTO P

ENDIF

for all transitions found: IF q TRANTO ^A and r

substitute IF q TRANTO ^A and r

IF ^B TRANTO ^P

ENDIF
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++ 1 ++ DNF(cond)

;; This procedure translates a comples boolean formula into distunct

;; normal form (or SUM OF PRODUCTS).

;; This functions redefines each boolean expression in order of its

;; precedence in the boolean formula and applies the following rules.

;; Assume that the AND has precedence over OR in the absence of () .

;; Here the I indicates the OR logical function which is used to
;; illustrate ;; the separate clauses that are returned.

A AND B --> no change I AAND B

A OR B --> no change I A

I B

(A OR B) AND C --> A AND C

OR B AND C
I AAND C

I BAND C
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++ 4 ++ #-FIND-DETRACTORY-EFFECTS:

;; Called at end of @:ANALYZE CONDITION in F to update transitions to

;; reflect detractions from conditions that are input predicates:
;; I. change transition to reflect a detraction to

;; any previously defined bases

;; 2. change previously defined transitions to reflect

;; detraction from newly defined bases

;; (for example, suppose a transition was found that contributed to the

;; number of bad inputs being increased. #B=#B+I; since there is a base

;; #G, that number would be decreased.

;;

(#) FOR EACH NEW TRANSITION IF ... TRANTO ...:

;; Are there any previously defined bases that are affected by this
;; transition?

A. FOR ALL (previously defined) OPERATIONAL BASES (that represent

input predicates)

i .

2.

If COI, look at logical for COI

if base or logical defined in IF ... part of transition

(as a high level AND) and

if base or logical violated in (TRANTO...) part of transition

THEN ADD TO THE (TRANTO ...) USING THE DE_RACTORY RULES FOR

THIS CONDITION

B. FOR EACH NEW OPERATIONAL BASE ESTABLISHED (* are there any

previously defined transitions that affect the base *)

FOR ALL (previously defined) transitions

i °

2.
If COI, look at logical for COI

if base or logical defined in IF ... part of transition

(as a high level AND) and

if base or logical violated in (TRANTO...) part of transition

THEN ADD TO THE (TRANTO . ..) USING THE DETRACTORY RULES FOR
THIS CONDITION

PROCESS Ll.alg:

;; PROBLEM DEFINITION:

;; I. Given component function (already modified for fault behavior and

;; defined in terms of input values) and

;; 2. given input characteristics

;;
;; Determine:

;; - identify output characteristics given input characteristics and

;; fault state
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;;;;;

;; - eliminate references to functions local variables and references to

;; output variables to right of l

;; - eliminate quantifiers

;;

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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PROCESS Ll.alg: (cont.)

FOR EACH SENTENCE IN FUNCTION DEFINITION: (* delineated by ; *)

(* follow propagation rules to propagation input characteristics

(* to output characteristics.

(* GOAL: end up without quantifiers, without variables except inputs

PHASE 1 :

i. FOR EACH FUNCTION DOMAIN: delineated by I

i. substitute characteristics in for variables:

a. for each characteristic substituted in, add

the conditions of other variables (from other sentences

under which the substitution can be made

- order of substitutions

i. quantifiers first- after quantifier has

been propagated, substitute into action part

of function and propagate again recursively

2. data that is dependent on others (from previous

sentences)

ex: x: (g) I y: (b) : substituting in

for x: (g), must include y: (b)

3. others

2 o apply propagation rules to operations or

conditions affected by substitutions

(this includes propagation of other characteristics

included in the condition of the substitution)

a. if object is function - apply function propagation

rules for characteristics (only when all parameters in

function have characteristics):

a. if function not identified as nil sensitive or not

nil sensitive (NS or NNS),

use a defined DEFAULT to translate to NS or NNS

c. if object = condition, use condition propagation rules

;; after each substitution/propagation, substitute resulting

;; characteristics in for other occurrences of variable, and

;; propagate through these occurrences until entire effect of

;; substitution has been propagated

;; redundant data: if propagation results in characteristic

;; being assigned to variable that is redundant, except

;; in the case of a quantifier (FA), do not substitute

;; characteristic in for other occurrences of redundant

;; variable since characteristics between instantiations of

;; redundant variables may be different:

; ; ex: x(1) : (b) and x(2) : (g)

;; this procedure will be implemented in a simpler

;; manner with the object oriented structure of KEE
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PHASEi RULES:

**********************************************************

* SUBBING RULES: for substituting input characteristics *

* in for input variables *

* SUBSTITUTIONS: VAR is variable being substituted, SET *
* contains the characteristics: *

* i. VAR: (set) --> VAR E SET2 ==> *

* if set2=0 --> vat: (set) *

* else var: (set n set2) *

* if (set n set2) = 0 --> USE SET DEFINED *

* BY FAULT/FUNCTION *

**********************************************************

************************************************************

* NIL SENSITIVE FUNCTION PROPOGATION RULES: for GOOD, *

* BAD, NIL characteristics for y = O(xl,x2, ...xn) *

* CONDITION: ACTION: *

* I. ALL x: (g) Y: (g) t AND(x1: (g) , x2: (g) . . . *

* xn: (g) ) *

* 2. TE x: (n) y: (n) J OR(xi: (n) *

* (AND xj: (^n) FA j<i) *

* (AND xk: (same) FA k>i) *

* FA xi : (n) ) *

* 3. ^TE xj: (=N) , y: (b) I OR(xi: (b) *

* TE x: (b) (AND *

* xj: (set-n) FA j>i ) *

* (AND xk: (g) FA k<i) *

* ) *

* FA xi : (b) , *

* FA k<i:xk: (set - g <> set) *

************************************************************

NON-NIL SENSITIVE FUNCTION PROPOGATION RULES: for GOOD, *

BAD, NIL characteristics for y = O(xl ..... xn)

where 0 is not nil value sensitive:

CONDITION : ACTION : *

i. ALL x: (g) y: (g) J AND(x1: (g), x2: (g) . .. *

xn : (g) ) *

2. TE x: (b) y: (b) i OR (xi: (b) *

AND (xk: (^b) FA k<i) *

FA xi: (b) ,FA k<i:xk: (g) *

• 3. ALL x: (n) y: (n) J AND(x1: (n) , x2: (n) . . . *

• xn :(n) *
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PHASE1 RULES:(cont.)
************************************************************
* CONDITIONPROPAGATIONRULES: for conditions *
* =, <> , < , > , >= , <= : <rel> *
* Assumptions: *
* i. assumex:g <> y:b where x,y are any variables *
* - for x: (setl) = y: (set2) *

* - separate into four possible clauses: *

* i. if g in setl then remove b from set2 *

* 2. if b in setl then remove g from set2 *

* 3. if g in set2 then remove b from setl *

* 4. if b in set2 then remove g from setl *

* - combine for common clauses *

* - eliminate clauses in which setl or set2 = 0 *

* 2. Redundant or replicated input ports (or variables *

* derived from such input ports) *

* - may not always hold , therefore, ask user *

* - assumption: x:g = y:g *

* - for x: (setl) <> y: (set2) *

* - separate into two possible clauses: *

* i. if g in setl then remove g from set2 *

* 2. if g in set2 then remove g from setl *

* - combine for common clauses *

* - eliminate clauses in which setl or set2 = 0 *

* ( except for setl = set2 = (g,b), there will *

* only be I possible clause) *

* 3. Redundant or replicated input ports (or variables *

* derived such input ports) *

* - may not always hold , therefore, ask user *

* - assumption: x:b = y:b *

* - for x: (setl) <> y: (set2) conditions *

* - separate into two possible clauses: *

* I. if b in setl then remove b from set2 *

* 2. if b in set2 then remove b from setl *

* - combine for common clauses *

* - eliminate clauses in which setl or set2 = 0 *

* ( except for setl = set2 = (g,b), there will *

* only be 1 possible clause) *

* 4. If n in setl or set2 for all boolean comparators *

* (<,>,=,<=,>=,<>), remove n from setl,set2 *

* - if setl or set2 = 0 then remove clause *

* - add clause: n I x(i) :n FA x(i) : (set includes n) *

* 5. Interactively Verified Assumption: (Fhase 3) *

* (used last in propagation) *

* - hence try to eliminate characteristics *

* RULE: if x: (setl) <rel> y: (set2) then ask: *

* NEVER TRUE (x:c = y:d) for all c,d in setl, set2 *

* - for each T answer received by user: *

* - separate into two possible clauses: *

* I. if c in setl then remove d from set2 *

* 2. if d in set2 then remove c from setl *

* - combine for common clauses *

* - eliminate clauses in which setl or set2 = 0 *
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PHASE 2 :

B. INSTANTIATE FOR EACH POSSIBLE OUTPUT CHARACTERISTIC:

******************************************************

* INSTANTIATION RULES: *

* I. for every occurrence of VAR , sub VAR: (c) *

* - perform propagation on all relations *

* effected by the substitutions in order *

* listed in substitutions. *

* QUANTIFIER RULE: C is the place where VAR was *

* substituted in step 1 *

* i. FA var <cond> C --> *

* - eliminate quantifier (fully quantified) *
******************************************************

PROCEDURAL SPECIFICATION: find element to left of I:

(* solve for each characteristic possibilities for output

(* reduce resultant expression to right of I

1. if variable on left:

for each characteristic associated with that variable

a. instantiate for all occurrences of variable

b. propagate

c. add vat: (char) as data condition on

right of

2. if function on left;

a. use function propagation rules to define

characteristics of output of function

b. apply propagation of characteristics to all

parameters.

c. add var: (char) as data condition on

right of I for all variables in function

d. take out quantifiers that are now fully qualified

- see QUANTIFIER RULE above

3. if single characteristic on left: done

END : FOR EACH FUNCTION DOMAIN
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PHASE3 :

C. after all domains in sentence have been analyzed:

i. combine for common output characteristics

2. Detect overlaps BETWEEN output characteristics

FOR EACH output characteristic group

(* check each pair of output characteristics *)

For i = 1 to OC where OC is number of output characteristics

for j = i+l to OC

check (i, j) where i, j are unique output characteristics

end

end;

CHECK (i, j) :

(* check each domain in i against each domain in j *)

for k = 1 to n(i) where k, 1 are clauses in i, j resp.

for 1 = 1 to n(j)

paircheck (i .k, j. i)

end;

end;

end CHECK;

PAIRCHECK (i.k, j.l)

(* check input characteristic for input x in i.k

against input characteristic for input x in j.l

do for all input variables. If there is an

overlap, then call correct conflict *)

for x = 1 to n where n is number of inputs

if (INTERSECTION i.k(x) j.l(x)) = 0)

exit (* found difference *)

if NOT ( (INTERSECTION i.k(x) j.l(x)) = 0)

add x to conflict list;

end for;

(* if reaches here, then there was an overlap of input

characteristics *)

CORRECT CONFLICT (i. k j. i)

end PAIRCHECKT
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PHASE3: (con't)

CORRECTCONFLICT(i.k j.l)
(* there is no input variable whose characteristics are

mutually exclusive in the separate domains. Therefore

either the domains are identical for the input

characteristics or one domain is a proper subset of the

other domain *)

i. for all conditions in i,j:

apply rule 5 of CONDITION PROPAGATION RULES

- if any reductions are made, perform

paircheck again to see if overlap remains

2. If no action taken in 1 or if overlaps persist:

if any input variables on conflict list are not

identical with the other domain, then either

Heuristic: if the domains are for g output and b

output, the system shift the overlap to the bad

output. (ask user)

- use for variable overlaps of b

Or ask the user if the overlap could be attributed to

one output characteristic only: if the user answers

no, then go to 3:

3. If no action taken in #2:

allow the overlap to remain and prompt the user to

specify a percentage likelihood of occurrence for each
domain.

END CORRECT CONFLICT;
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PHASE3: (con't)

3. Detect and correct overlaps WITHIN each output definition

(* this is done after #2 so that the resulting output

definition for the component would be complete. *)

3 .

For i = 1 to C where C is number of clauses for this output

characteristic

for j = i+l to C

PAIRCHECK (i,j) where i,j are unique claused for

this output characteristics

end

end;

PAIRCHECK (i,j)

(* check input characteristic for input x in i

against input characteristic for input x in j

do for all input variables. If there is an

overlap, then call correct conflict within *)

for x = 1 to n where n is number of i_puts

if (INTERSECTION i(x) j(x)) = 0)

exit (* found difference *)

if NOT((INTERSECTION i(x) j(x)) = 0)

add x to conflict list;

end for;

(* if reaches here, then there was an overlap of input

characteristicsa *)

CORRECT CONFLICK WITHIN(i,j);

end PAIRCHECK_

"CORRECT CONFLICK WITHIN (i j)

(* there is no input variable whose characteristics are

mutually exclusive between domains. Therefore either

the domains are identical for the input characteristics

or one domain is a proper subset of the other domain *)

- choose the domain with that is the superset of the pair

(* guarenteed not to overlap with any other output

characteristic definition AND resulting output

definition will be defined on all input

characteristics. *)

eliminate from each resulting output characteristic definition

data characteristics that involve full enumeration of

characteristic possibilities

4. FOR EACH CONDITION WITHIN EACH DOMAIN

i. Separate conditions from characteristics

(e.g. x:b and z:b and x:b > z:b)

2. Eliminate reference to intermediate characteristics.
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(* definition of intermediate variable: any

(* data variable that is not the output variable

(* being analyzed and is not an input variable
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APPENDIX C: MANUAL TRACE OF VOTED REDUNDANT PROCESSORS

The following is a trace of the algorithms for the

Reliability model generator for the example system shown in

figure C.I. The Building Blocks Definition for the system

is shown in figure C.2. This is the same BBD as was illus-

trated in figure 7 and discussed in section 3.1.2.2. The

only difference was in the naming of the input and output
variables.

The System Definition is shown in figure C.3. Most of

the SYSD may be generated automatically by the system based

on the user specifying the highest level component to be

analyzed (SYSTEM in example i) and specifying failure modes

for the lowest level components. However, some connections

between components are not specified in the BBD, and there-

fore, need to be entered by the user. This is implemented

as an interactive process between the system and the user.

Figure C.2 indicates two connections (denoted by *I* and

*3*) that are not specified in the BBD. Finally, if a com-

ponent is redundant, the user is prompted to enter the

redundancy level (denoted by *2* in figure C.2) .

The desired output of the system is shown in figure

C.4. This trace was performed according to the algorithms

as they existed in September, 1987. Changes to these algo-

rithms are itemized in appendix A. Despite the changes, the

algorithms of appendix B retain the numerical cross refer-

ence that is used to identify the steps in the trace.
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Figure C1. Voted Redundant Processor Example
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COMPONENT NAME: SYSTEM PARENT COMPONENT: EXAMPLE1

FUNCTIONAL SPECIFICATIONS:

INPUT x;OUTPUT y

SUBCOMPONENTS: A,B

SUBCOMPONENT STRUCTURE:

A::INPUT x;OUTPUT x';

B::INPUT x';OUTPUT y;

COMPONENT NAME: A PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT x;OUTPUT x';

SUBCOMPONENTS: P(i), VOTER

SUBCOMPONENT STRUCTURE:

FA (P(i)) ::INPUT x OUTPUT x'';

VOTER:: FA (P(i)): INPUT x'' (i): OUTPUT x';

COMPONENT NAME: P PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

INPUT x; OUTPUT x'';

FAILURE MODES:

NO-OP: OUTPUT x'' : (n)

BAD: OUTPUT x'': (b)

COMPONENT NAME: VOTER PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

FA (P(i)) : : INPUT x' ' (i) ;

OUTPUT x" = N I ALL(×'' (i) : (n))

t r FA z<>t, x'' (i} : (^n) : :

# (×' ' (i)=t) > # (x' ' (i)=z)

COMPONENT NAME: B PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT x';OUTPUT y = x';

FAILURE MODES:

NO-OP: QUTPUT y: (n)

Figure C2. BBD for Example I
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' 'COMPONENT NAME : SYSTEMi' BBD COMPONENT :

PARENT : none

REDUNDANCY : none

SYSTEM

I/O CONNECTIONS: none

COMPONENT NAME: A1

REDUNDANCY: none

BBD COMPONENT: A

PARENT: SYSTEM1

I/O CONNECTIONS: x from SYSTEMl.x

x" to Bl.x' *i*

t

BBD COMPONENT: P

PARENT: A1

COMPONENT NAME: P(n)

REDUNDANCY: 3 *2*

I/O CONNECTIONS: x from Al.x

x'' to VOTERI.x'' (n)

COMPONENT NAME: VOTER1

REDUNDANCY: none

BBD COMPONENT:

PARENT: A1

I/O CONNECTIONS: x'' (n) from P(n) .x''

x" to A1. x'

VOTER

COMPONENT NAME: B1

REDUNDANCY: none

I/O CONNECTIONS: x' from Al.x'

y to SYSTEMI.y

BBD COMPONENT: B

PARENT: SYSTEM1

*3*

key: *n* indicates user input required

Figure C3. SYSD for Example 1

i"
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OUTPUT: ASSIST FILE

SPACE = (B: 0..1,#B: 0..3, #(3: 0..3, N: 0..3, #PNOF: 0..3)

DEATHIF (B=0 AND (#B>#G)) OR (#N=3 AND B=O) OR B=I

PBADRT = (*GET FROM BBD OR QUERY USER*)

PNO-OPRT = ( * GET FROM BBD OR QUERY USER*)

BNO-OPRT = (*GET FROM BBD OR QUERY USER*)

1. IF #PNOF>0 TRANTO #PNOF=#PNOF-1,
#B=#B+I #G=#G-1

BY XPBADRT;

2. IF #PNOF>0 TRANTO #PNOF=#PNOF-1,
#N=#N+I, #G=#G-1

By P NO OPRT;

3. IF B=O TRANTO B=I BY BNO-OPRT;

Figure C4. Example 1 Output
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THIS IS A TRACE OF EXAMPLE 1 FOR ALL PROCESSES EXCEPT PRO-

CESS3 AND PROCESS 2X WHICH ARE REFERENCED HERE WHEN INVOKED,

BUT THE TRACES FOR THEIR ALGORITHMS ARE CONTAINED IN OTHER

FILES. THE DOUBLE LINED ****** SEPARATE THE COMPONENT

DOMAINS. THE ####### BOX ILLUSTRATES THE INFORMATION PASSED

FROM THE PARENT COMPONENT TO ITS SUBCOMPONENTS.

EACH NUMBERED STEP INDICATES THE CONTROL FLOW OF THE

PROCESSES FOR THIS EXAMPLE. THEY ARE NOT LISTED IN NUMERIC

ORDER. RATHER, THE STEPS FOR EACH COMPONENT ARE LISTED

TOGETHER TO ILLUSTRATE THE RECURSIVE TREE-LIKE BEHAVIOR OF

THE ALGORITHMS. WHEN ONE COMPONENT CALLS ITS SUBCOMPONENT

OR WHEN A SUBCOMPONENT PROCESS RETURNS TO ITS PARENT, THE

STEP NUMBER IS GIVEN TO INDICATE WHAT TRACE STEP IS NEXT.

THIS IS REPRESENTED BY A

FOR EACH STEP, THE PROCESS BEING INVOKED IS LISTED, AND EACH

SUBSEQUENT NUMBER (OR LETTER) REFERENCES THE STEP IN ALGO-

RITHM FOR THAT PROCESS.
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I. INITIALIZER:

-highest level component is SYSTEM1

-fill in table: history, outside effects=none
*******************************************************

######################################################9#
# TRACE TABLE: SYSTEM1

# function: history outside effects

# input x;output y none none

##99####9##9####9###9###9#9###99#99999###9##9999#9####99

-pass control to SYSTEM1

° IN SYSTEM I: not lowest level

PROCESS I:

I. set up trace tables for components A and B
#99####99##9#9#99#999####9##9#####9##############9#9####
# TRACE TABLE: A

9 function history outside effects

# input x; output x' none none
#999##99##99#99###9#999#9#9999999999999#9999###999#9##9#
9 TRACE TABLE: B

# function history outside effects

# input x'; output y none
##99##9#9#9#9##9##9#####9#9999########9#9#9#99#######99#

2. set up priority Q (first-in-first-out)
3. call Process 2

PROCESS 2: take top element off list (A) and instantiate (3)

ii. IN SYSTEM1:

PROCESS 2:

i. update external effects for component B

2. instantiate next subcomponent - B pass to 12

- returned output definitions and transitions

3. no more components - pass control to process 3

for B

(16)

16. PROCESS 3 in SYSTEM1:

TRANSITIONS:

GIVEN:

FOR A:

TRANSITIONS:

i. IF PiNOF

2. IF PiNOF

TRANTO PiBAD, # (x' 'i: (B)=# (x''i: (B)) +i,

# (x''i: (G)=9 (x' 'i: (G))-I BY P BADRT

TRANTO PiNO-OP, #(x''i: (N)=# (x''i: (N)) +I,

# (x''i: (G)=#(x''i: (G)) -I BY P NO-OPRT
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OUTPUT DEFINITION: for x'

OUTPUT B IF # (X": (B)) > #(X": (G))

OUTPUT N IF #(X": (N))=3)

OUTPUT G IF #(X": (G)) > # (X": (B))

FOR B :

TRANSITIONS :

i. IF BNOF TRANTO BNO-OP BY BNO-OPRT

OUTPUT DEFINITION:

OUTPUT G IF x' : (g) AND BNOF
OUTPUT B IF x' : (b) AND BNOF

OUTPUT N IF (x' : (n) AND BNOF) OR BNO-OP

RESULTS :

OUTPUT DEFINITION:

OUTPUT B IF BNOF AND (#(x''i: (b)) > # (x''i(g)))

OUTPUT G IF BNOF AND (#(x''i: (g)) > # (x''i(b)))

OUTPUT N IF (#(x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS :

I. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,
#(X''i: (G)=# (X''i: (G))-I BY P BADRT

2. IF PiNOF TRANTO PiNO-OP, #(X''i: (N)-L-#(X''i: (N))+I,
# (X''i: (G)=# (X''i: (G))-i BY P NO OPRT

3. IF BNOF TRANTO BNO-OP BY BNO-OPRT

- see examl.proc3.16.abs for description of this step

3. IN COMPONENT A: not lowest level

PROCESS i:

_# set up trace tables for components P and VOTER######################################################
# TRACE TABLE: P(i)

# function history outside effects

# input x; output x''; none none

########################################################
# TRACE TABLE: VOTER

# function history outside effects

# input x'';output x' none

########################################################
2. set up priority Q (first-in-first-out - rules 1 and 3)
3. call Process 2

7 .

PROCESS 2: take top element off list (P) and instantiate (4)

IN COMPONENT A:

PROCESS 2:

i. )update other effects for VOTER - rule 1

########################################################
# TRACE TABLE: P(i)

# function history outside effects

# input x; output x''; none none
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.

########################################################
# TRACE TABLE: VOTER

# function history outside effects

# input x'';output x' none x' (i) : (g,b,n)
########################################################
2. take top element off list (VOTER) and instantiate (8)

IN COMPONENT A:

PROCESS2:

- finished with all subcomponents, pass to PROCESS3

i0. COMPONENT A: PROCESS3

GIVEN P's OUTPUT N IF PiNO OP

OUTPUT B IF PiBAI_

OUTPUT G IF PiNOF

VOTER" S OUTPUT B IF #(x''i: (B)) > #(x''i: (G))

OUTPUT N IF ALL x''i: (N)

OUTPUT G IF #(x''i: (G)) > #(x''i: (B))
********************

* RESULT:

* OUTPUT DEFINITION: OUTPUT x' •

* N IF #((x''i: (n))=3
* G IF

* B IF

* TRANSITIONS:

* i. IF PiNOF
,

* 2. IF PiNOF

#(x''i: (g)) > #(x''i: (b))

#(x''i: (b)) > #(x''i: (g))

TRANTO PiBAD, #(X''i: (B))=#(X''i: (B)+I) ,

#(X''i: (G)=#(X''i: (G))-I BY P BADRT

TRANTO PiNO OP, #(X' 'i: (N))=#(X'_i: (N)+I),

#(X''i: (G))-----#(X''i: (G))-l BY P NO OPRT

see examl.proc3.10.abs for abstract description of this

step

4. IN COMPONENT P: lowest level

PROCESS ix:

i. create transitions for each fault possibility
2. substitute into functional definition:

3. Propagate:
two results:

i. input x; output x'' : (n) from fault NO-OP

2. input x; output x'' : (b) from fault BAD

4. no history to analyze

5. output characteristics defined - don't call process 2x

5 .

6. PROCESS 3x: Define output definition for each output characteristic

OUTPUT (output characteristic)

IF (function defined in 2x) and (fault state)
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OUTPUT N IF () AND P NO OP

- simplify: OUTPUT N IF P NO OP

OUTPUT B IF () AND P BAD

- simplify: OUTPUT B IF P BAD
add in no fault state: OUTPUT G IF P NOF

return to parent (A) (7)

8. IN COMPONENT VOTER: lowest level

PROCESSIX:

- no faults to model (according to BBD) so only normal

behavior to consider with external effects given

PROCESS 2x: --> FA (P (i)) : input x''i FROM P(i)

output x' --> N I all x''i: (n)
I FA z<>x', FA x' 'i: (^n) :

#(x''i=x') > #(x''i=z)

FOR TRACE SEE PROCESS2X.VOTER

RESULT :

x' :(n)
X' : (g)

X' : (b)

I all(x''i: (n)

I # (x''i: (g)) > #(x''i: (b))

I #(x''i: (b)) > #(x''i: (g))

return to A (7)

12 IN B: lowest level

PROCESS ix:

I. create transitions for each fault possibility

IF BNOF TRANTO BNO-OP BY BNO-OPRT

2. substitute into functional definition:

input x'; OUTPUT y: (n)

3. Propagate: no propagation necessary

4. no history to analyze

5. output characteristic defined: don't call process2x for
NO OP fault

6. ca_l process2x for NOF state and x' : (g,b,n) - goto 14
- return from 14

call process3x after all fault cases have been analyzed - goto 15
13

14 PROCESS 2x in B for normal behavior

GIVEN input x';output y from x'

x' : (g,b,n)

UNSPECIFIED FUNCTION:

y = 0(x' : (g,b,n})

i. for characteristic x' :g
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15.

2 .

.

- apply propagation rule: y=o(g) --> g

OUTPUT y: (g) IF x" : (g)
for characteristic x' :b

- apply propagation rule:

OUTPUT y: (b) IF x' : (b)
for characteristic x' :n

- apply propagation rule:

OUTPUT y: (n) IF x' : (n)

y = O(b) --> b

y = O(n) --> n

no combining of common characteristics

PROCESS 3x: Define output definition for each output characteristic

OUTPUT (output characteristic)

IF (function define in 2x) and (fault state)

OUTPUT Y: (N) IF () AND BNO-OP

OR x' : (n) AND BNOF

OUTPUT Y: (g) IF x' : (g) AND BNO-0F

OUTPUT Y: (b) IF x' : (_) AND BNO-OF

return to parent (systeml in step ii

************************************************************************

PROCESS 4:

GIVEN:

OUTPUT DEFINITION:

OUTPUT B IF BNOF AND (# (x' 'i: (b)) > #(x''i(g)))

OUTPUT G IF BNOF AND (#(x' 'i: (g)) > # (x''i(b)))

OUTPUT N IF (#(x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS :

i. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

# (X' 'i: (G) =# (X''i: (G)) -i BY P BADRT

2 . IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(X''i: (N))+I,

#(X''i: (G)=#(X''i: (G))-I BY P NO OPRT

3. IF BNOF TRANTO BNO-OP BY BNO-OPRT

i. APPLY MODEL REDUCTION TECHNIQUES:

STEP i: find superfluous variables

PiBAD, PiNO OP

STEP 2: combines superfluous variables for each component state
and for each data variable

PiANYOF(BAD,NO-OP)
Substitute:

i. IF PNOF TRANTO P ANYOF(BAD,NO-OP),#(x''i: (B)=#(x''i: (B))+I,

--# (x' 'i: (G)=# (x''i: (G))-I BY P BADRT
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2. IF PNOFTRANTOP ANYOF(BAD,NO-OP),#(x''i: (N)=#(x''i: (N))+I,
--# (x''i: (G)=# (x''i: (G))-I BY P NO OPRT

3. IF BNOF TRANTO BNO-OP BY BNO-OPRT

STEP 3: heuristic d: for redundant components:

i. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#(x''i: (B)=#(x''i: (B))+I,

# (x''i: (G)=# (x' 'i: (G))-I BY #PNOF x P BADRT

2. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#(x''i: (N)=#(x''i: (N))+I,

#(x''i: (G)=# (x''i: (G))-I BY #PNOF x P NO OPRT
3. IF BNOF TRANTO BNO-OP BY BNO-OPRT

NOTE: this heuristic did not recognize that the #xi:g variable

could be used for the same purpose as #PiNOF

FINAL MODEL:

OUTPUT DEFINITION:

OUTPUT DEFINITION:

OUTPUT B IF BNOF AND (#(x''i: (b)) > #(x''i(g)))

OUTPUT G IF BNOF AND (# (x''i: (g)) > #(x''i(b)))

OUTPUT N IF (# (x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS :

i. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#(x''i: (B)=#(x''i: (B))+I,

# (x''i: (G)=# (x''i: (G))-I BY #PNOF x P BADRT

2. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#(x''i: (N)=#(x''i: (N))+I,

# (x''i: (G)=#(x''i: (G))-I BY #PNOF x P NO OPRT
3. IF BNOF TRANTO BNO-OP BY BNO-OPRT

TRANSLATING INTO ASSIST:

The reliability question was: R(y: (b) or Y: (n))
Therefore the death state would be:

DEATH IF:[ BNOF AND (#(x''i: (b)) > #(x''i(g))) )

(* output definition for Y: (b) *)

OR (# (x' 'i: (n))--3) AND BNOF) OR BNO-OP }

(* output definition for Y: (n) *)

The variables will be represented as follows:

I. a state vector element for each component state is created. The

number of values possible for the element will equal the number of

states for the component with value 0 being the NOF state:

For redundant components, the SYSD will determine the number

of components: (* example: (SYSD say P(3) *) in examl.

B[0..i] (* 0=BNOF, I=BNO-OP *)

2. For variables #(x''i: (b)), #(x''i(g))), and #(x''i: (N)), a integer

variable for each will be set up.

#B: integer
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o

#G: integer

#N: integer

#PNOF:integer

other variables will be represented in the same manner as in i.
A state vector element for each variable will be created, and

the number of values possible for the element will equal th

number of values or characteristics for the variable:

- none in examl

The transitions and death state will be changed to reflect the

representation:

DEATH IF:{ B=0 AND (#B > #G ) }

OR (#N=3 AND B=0 )

OR B=I

TRANSITIONS:

i. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#B=#B+I, #G=#G-I

BY #PNOF x PBADRT

2. IF #PNOF>0 TRANTO #PNOF=#PNOF-I,#N=#N+I, #G=#G-I

BY #PNOF x P NO 0PRT

3. IF B=0 TRANT0 B=I BY BNO-OPRT
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This is an illustration of the reasoning involved in process2x for

the voter component in examl.

NOMENCLATURE:

<> : not equal
FA : for all

# : number
--> : function definition follows

I : domain separator.

; : sentence separator
^ : NOT

INTERNAL FUNCTIONAL REPRESENTATION (BBD) FOR VOTER:

FA (P(i)) :

input x''i 4FROM P (i) ;

OUTPUT x' --> N I (ALL x''i: (n))

I FA z <> x', FA x''i: (An) :

#(x''i=x') > #(x''i=z)

READS: for all components P, input x''i from P.

output x' which is defined by the following

domains: x' has the characteristic N (nil)

is all x''i are nil. Otherwise, x' is defined

as the value in which the number of x''i equal

to x' is greater than the number of x''i not

equal to x' (in other words, x' is the majority

of the values for x''i) x''i characteristics

that are nil are excluded in the analysis

NOTE: function is not defined for inputs in which no majority exists

PROBLEM: Given the above function and the following input conditions:

x''i: (g,b,n)

Define the characteristics of the output as a function of

its inputs

RESULT OF PROCESS 2x:

OUTPUT x" : (n) I all(x''i: (n))

OUTPUT x' : (g) I # (x' 'i: (g)) > # (x' 'i: (b))

OUTPUT x' : (b) I # (x''i: (b)) > # (x''i: (g))
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DISCUSSION:

i • Process ix has previously considered the effects of faults

on the component function. Process 2x considers the convolution

of function (from ix) and inputs (good and faulted) on the component

outputs.

2 ° The output definition produced by process2x must not include

reference to any variables other than input variables. This includes
variables such as intermediate variables or variables used for

quantifiers (such as z in examplel) .

o The output definitions defined in process2x must not overlap either
within a characteristic definition or between characteristics.

Examplel: overlap within a output characteristic definition

output g IF x: (g) OR

IF x: (g) and x' : (b)

must be simplified to:

output g if x: (g)

Example2: overlap between output characteristic definitions

output g if x: (g)

output b if x: (g) OR x' : (b)

is not acceptable either because the output can not be

g and b when x: (g) as the definition indicates.
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PROCESS:

CONSIDER EACH SENTENCE (DELINEATED BY ;) SERIALLY

FIRST SENTENCE: FA (P(i)) : input x''i FROM P(i);

input functions are not analyzed in process 2x since they

will be used in the BBD to bind variable names from one component

outputing the variable with another component referencing the
same variable as input.

SECOND SENTENCE :

OUTPUT x' --> N r (ALL x''i: (n))

I FA z <> x', FA x''i: (n) : #(x''i=x') > #(x''i=z)

CONSIDER EACH DOMAIN SEPARATELY: (a domain is delineated by a I)

FIRST DOMAIN: ****

OUTPUT x' --> N I (ALL x''i: (n))

The input characteristics for x''i: (g,b,n) need not be considered
since it has been determined that x'' : (n)
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** ** SECONDDOMAIN: * * * *

OUTPUT x" --> [ FA z <> x', FA x''i: (^n) : #(x''i=x') > # (x''i=z)

SUBSTITUTE INPUT CHARACTERISTICS INTO FUNCTION:

The quantifier FA x''i: (^n) limits that characteristic

possibilities for x''i. The inputs characteristics for x''i are

x''i: (g,b,n) ° Combining these quantifiers, the characteristics

for x''i are (g,b) .

Substitute each possible characteristic for x''i: (g,b)

into the first domain for every occurrence of x''i:

OUTPUT x' --> i FA z <> x', FA x''i: (g,b) :

#(x''i: (g,b)=x') > #(x''i: (g,b)=z)

SECOND DOMAIN AFTER SUBSTITUTING INPUT CHARACTERISTICS:

OUTPUT x' --> I FA z <> x', FA x''i: (g,b) :

#(x''i: (g,b)=x') > #(x''i: (g,b)=z)

PROPAGATE INPUT CHA2J_CTERISTICS THROUGH FUNCTION DEFINITION TO OUTPUT:

These substitutions are propagated to other variables for

each occurrence of the input characteristic based on

the functional specification. For example:

OCCURRENCE: #(x''i: (g,b) =x' )

#(x''i: (g,b)=x') is a variable which specifies the number of

x''i that equal x', and it also specifies that x''i can be g or b.

Based on the equality relationship between x''i and x',

the characteristics of (g,b) are propagated to x' .

PROPAGATED: # (x''i" (g,b)=x' : (g,b))

OCCURRENCE: #(x''i: (g,b)=z) similarly will result in the

PROPAGATED: # (x''i" (g,b)=z: (g,b))

RESULT AFTER PROPAGATION:

OUTPUT x' --> I FA z: (g,b) <> x' : (g,b),x''i: (g,b) :

#(x''i: (g,b)=x' : (g,b)) >

# (x''i: (g,b)=z: (g,b))
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SECONDDOMAINAFTERPROPAGATINGINPUT CHARACTERISTIC TO OUTPUT:

OUTPUT x' -->
I FA z: (g,b) <> x' : (g,b),x''i: (g,b) :

#(x''i: (g,b)=x' : (g,b)) >

# (x''i: (g,b)=z: (g,b))

INSTANTIATE FOR EACH CHARACTERISTIC OF OUTPUT x' :

FOR x' : (g) :

OUTPUT x' : (g) --> I FA z: (g,b) <> x' : (g),x''i: (g,b) :

#(x''i: (g,b)=x': (g)) >

# (x''i: (g,b)=z: (g,b))

PROPAGATE CHARACTERISTIC x' : (g) THROUGH FUNCTION DEFINITION:

As in the substitutions, the characteristic g for variable x' is

propagated through to the other variables via the functional definition:

OCCURRENCE i. FA z: (g,b) <> x' : (g) :

This quantifier states that z is not equal to x', and z has the

character possibility of g and b but x' has only

one possible characteristic, g. From this, it can be concluded that

x' PROPAGATED to z: FA z: (b) <> x' : (g)

Once a new characteristic for z is defined, it should

be substituted in for all other occurrences of z and

the propagation/substitution cycle continues until
all occurrences of all affected variables have been

considered.

SUBSTITUTE z: (b) IN FOR ALL OCCURRENCES OF z:

OCCURRENCE i: # (x''i: (g,b)=z: (b))

z PROPAGATED TO x' 'i: #(x''i: (b)=z: (b))

DO NOT SUBSTITUTE x''i: (b) IN FOR ALL

OCCURRENCES OF x''i: since x''i is a

variable that represents more than one

component
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PROPAGATE CHARACTERISTIC x' : (g) THROUGH FUNCTION DEFINITION:

OUTPUT x' : (g) --> I FA z: (g,b) <> x' : (g) ,x''i: (g,b) :

#(x''i: (g,b)=x' : (g)) >

#(x''i: (g,b)--z: (g,b))

OCCURRENCE 2: #(x''i: (g,b)=x' : (g)) :

x' PROPAGATED TO x' 'i: # (x' 'i: (g)=y: (g))

DO NOT SUBSTITUTE x''i: (b) IN FOR ALL

OCCURRENCES OF x''i

RESULT AFTER PROPAGATING/SUBSTITUTION CYCLE FOR INSTANTIATION X' : (g) :

x' : (g) I #(x''i: (g)=x' : (g)) > #(x''i: (b)=z: (b))
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INSTANTIATE FOR EACH CHARACTERISTIC OF OUTPUT x':

FOR X' : (b) :

OUTPUT x' : (b) --> I FA z: (g,b) <> x' : (b),x''i: (g,b) :

#(x''i: (g,b)=x' :(b)) >

#(x''i: (g,b)=z: (g,b))

PROPAGATE CHARACTERISTIC x' : (b) THROUGH FUNCTION DEFINITION:

OCCURRENCE i. FA z: (g,b) <> x' : (b) :

x' PROPAGATED to z: FA z: (g) <> x' : (b)

SUBSTITUTE z: (g) IN FOR ALL OCCURRENCES OF z:

OCCURRENCE l: # (x''i: (g,b)=z: (g))

z PROPAGATED TO x''i: # (x''i: (g)=z: (g))

DO NOT SUBSTITUTE x''i: (g) IN FOR ALL
OCCURRENCES OF x' ' i :

OCCURRENCE 2: #(x''i: (g,b)=x" : (b)) :

x' PROPAGATED TO x' 'i: # (x' 'i: (b)=x' : (b))

DO NOT SUBSTITUTE x''i: (b) IN FOR ALL
OCCURRENCES OF x''i

RESULT AFTER PROPAGATING/SUBSTITUTION CYCLE FOR INSTANTIATION X' : (g) :

x' : (b) I #(x''i: (b)=x' : (b)) > #(x''i: (g)=z: (g))
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Results for both instantiations of x' have created two domains:

x':(g) I #(x''i: (g)=x':(g)) > #(x''i: (b)=z: (b))

x' : (b) I # (x''i: (b)=x' : (b)) > # (x''i: (g)=z: (g))

ELIMINATE REFERENCE TO X' ON RIGHT SIDE OF ]

The reference to x' on the right side of the I may now be eliminated

since each new domain directly specifies the characteristic for x'

ELIMINATE REFERENCE TO Z

Further, recall from the discussion prior to this example that

variables such as z should not appear in the final result.

Note that the propagation�substitution cycle propagated the

characteristic for z to any affected variables. Therefore, the

fact that z: (b) or z: (g) is not needed in the function specification.

and its reference may be eliminated.

FINAL RESULT FOR DOMAIN 2:

x' : (g) I # (x''i: (g)) > # (x''i: (b))

x' : (b) l # (x''i: (b)) > # (x''i: (g))

FINAL RESULT FOR ALL DOMAINS:

x' : (n) I all(x''i: (n)

x' : (g) I #(x''i: (g)) > #(x''i: (b))

x' : (b) l #(x''i: (b)) > # (x''i: (g))
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The following is an averview of the processing involved in examplel when

process3 is invoked in component A. Details of the processing can be

found in EXAMI.TRACE2.ABS. This example illustrates the reasoning behind

the process flow ( shown in small letters ) and shows a procedural
ALL CAPTITALS).
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COMPONENTA: PROCESS3
GIVENP'S OUTPUTDEFINITION:

OUTPUTN IF PiNO OP
OUTPUTB IF PiBAD
OUTPUTG IF PiNOF

P'S TRANSITIONS:
I. IF PiNOF TRANTO PiBAD BY PBADRT

2. IF PiNOF TKANTO PiNO-OP BY PNO OPRT

VOTER'S DEFINITION:

OUTPUT B IF # (x''i: (B)) > # (x''i: (G))

OUTPUT N IF ALL(x''i: (N))

OUTPUT G IF # (x''i: (G)) > #(x' 'i: (B))

VOTER'S TRANSITIONS: none

DESIRED OUTPUT:

OUTPUT DEFINITION:

OUTPUT B IF # (x''i: (B)) > # (x''i: (G))

OUTPUT N IF # (x''i: (N))=3)

OUTPUT G IF # (x''i: (G)) > # (x''i: (B))

I0

TRANSITIONS:

i ° IF PiNOF TRANTO PiBAD,# (x''i: (B)=# (x''i: (B))+I,

# (x''i: (G)=# (x''i: (G))-I BY PBADRT

2. IF PiNOF TRANTO PiBAD,#(x''i: (N)=#(x''i: (N))+I,

#(x''i: (G)=#(x' 'i: (G))-I BY PNO OPRT

*********************************************************************

DISCUSSION: This process is called once by every parent component (a

component that has subcomponents) to combine the output definition and

transitions of the subcomponents into an output definition for the

component. (This is then 'given' to its parent component who repeats this

process for its subcomponents and so on until the top level component) .

The top level output definition will be encoded into a state space model

and further model reduction techniques will be applied in process4.

The following criteria for the desired output (output definition and

transitions) of each instantiation of this process must be met:

i . The transitions and the output definition must reference the

same variables. Therefore, the process 3 must decide which

variables are necessary to describe the state space and which
variables can be eliminated. The criteria for eliminating

variables will be discussed later.

2 . Changes to all affected variables must be reflected in a

transition. For example, transition #I in P's transition

list must be changed to reflect the change in #(x''i: (b))
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and in #(x''i: (g)) because these variables are referenced

in the output definition.

o All transitions must be found. A transition will result

from a component fault. In this case, the transition

already exists (from processlx) and must be changed according

to the two criteria discussed above. However, a transition

may also be non-fault related, such as a transition that

models the recovery from a component fault. Such a transition

is not explicitly referenced in the individual subcomponent

definitions and must be 'found' first and then changed.

The way in which the output definition and transitions for a parent

component will be defined from the subcomponent output definitions and

transitions is similar to the way in which the same task is accomplished

manually. First, the subcomponent that produces the final output is

analyzed. Its output definition and transitions are examined. This

output definition references the input characteristics, that contribute to

the output. In order to determine the transitions that caused the input

characteristics, the next subcomponent analyzed is the component that

outputed" the data that became input to the last component. This process

is repeated (in this backward chaining manner) until the inputs to the

parent component are reached or the cycle repeats itself (as in the case

of a cyclical process). The following example shows this without

referencing the procedural details of process3:

STEP i:

output:

Look at the subcomponent that produces the final
the voter.

VOTER'S DEFINITION:

OUTPUT B IF # (x''i: (B)) > # (x''i: (G))

OUTPUT N IF ALL x''i: (N)

OUTPUT G IF # (x''i: (G)) > # (x''i: (B))

VOTER'S TRANSITIONS: none

ANALYZE EACH POSSIBLE OUTPUT CHARACTERISTIC SEPARATELY:

I. OUTPUT B IF #(x''i: (B)) > #(x''i: (G)) :

Stated as: the output is bad if the number of inputs x that are

bad outnumber the number of inputs that are good. In order to find

the transitions that effect the output being bad, find the transitions

that contribute to and detract from the number of inputs being bad and

the number of inputs being good.

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY

I . #(x''i: (B)) : find the transitions that affect this

condition:

The transitions that contribute to the number of x inputs

C-24



being bad is directly related to the transitions that

contribute to one x value being bad, so find transitions

that contribute to x being bad:

FOR OPERATIONS SUCH AS #, THERE HAS TO BE SOME

'KNOWLEDGE' IN THE SYSTEM TO DETERMINE WHAT CONDITION

TO ANALYZE (CALLED CONDITION OF INTEREST -COI) ++ 3 ++

x''i: (b) : find transitions that affect this conditions:

Since this is an input to the voter, look at the P

component definition that outputs x''i: (b) :

FOR INPUT CHA/L_CTERISTICS, ANALYZE THE SA/_E

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT x''i: (b) IF PiBAD

Again, in order to analyze the conditions under which

P's output is bad, find the transitions that affect
the condition PiBAD:

ANALYZE THE CONDITION (PiBAD) UNDER WHICH THE OUTPUT

CHARACTERISTIC (B) CAN OCCUR TO DETERMINE THE

TRANSITIONS THAT AFFECT THE CONDITION:

- PiBAD is a fault state of component P that results

when P fails by fault BAD (as specified in the BBD

definition of P) . Therefore the transition that

contributes to PiBAD is:

P's TRANSITIONS:

i. IF PiNOF TRANTO PiBAD BY PiBADRT

This transition contributes to PiBAD, but the COI

is x''i: (b) . Since P's output definition

states that the output is b if PiBAD, we can state the

following directly:

i. IF PiNOF TRANTO PiBAD, x''i: (b) BY PiBADRT

THE TRANSITION IS CHANGED TO REFLECT THE CHANGE

TO THE CONDITION BEING ANALYZED (x''i: (b)) ++ 4 ++

Once a transition has been found that contributes to

x''i: (b), change it to reflect an effect to #(x''i: (b))

which was the original condition being analyzed.

I. IF PiNOF TRANTO PiBAD,#(x''i: (B)=#(x''i: (b))+l
BY PBADRT
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THE TRANSITIONIS CHANGED TO REFLECT THE CHANGE

TO THE CONDITION BEING ANALYZED # (x' ' i: (b)) ++ 4 ++

2 o # (x''i: (g)) : find the transitions that affect this
condition :

As in the case for #(x''i: (b)), the transitions that

contribute to the number of x inputs being good is

directly related to the transitions that contribute to one

x value being good, so find transitions that contribute to

x being good:

FOR FUNCTIONS SUCH AS #, THERE HAS TO BE SOME

'KNOWLEDGE' IN THE SYSTEM TO DETERMINE WHAT
CONDITION TO ANALYZE ++ 3 ++

x''i: (g) : find transitions that affect this conditions:

Since this is an input to voter, look at P component
definition that outputs x''i: (g) :

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT
OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT x''i: (g) IF PiNOF

ANALYZE THE CONDITION (PiNOF) UNDER WHICH THE OUTPUT

CHARACTERISTIC (G) CAN OCCUR TO DETERMINE THE

TRANSITIONS THAT AFFECT THE CONDITION:

- PiNOF is a no fault state and there is no transition

that leads to this state.

Since no transitions contribute to x''i: (g),

there are no transitions that contribute to #(x''i: (g)) .

However, only transitions that contribute to #(x''i: (g))
have been analyzed. To determine transitions that detract

from #(x''i: (g)), look at transitions that have already
been defined as contributing to other conditions and

determine if these transitions detract from #(x''i: (g)) .
Transition #i does detract from #(x''i: (g)) and it must be

changed to reflect this:

i . IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,
#(X''i: (G)=# (X' 'i: (G))-I BY P BADRT

ALL PREVIOUSLY DEFINED TRANSITIONS THAT DETRACT

FROM THE CURRENT CONDITION ARE CHANGED TO REFLECT

THIS? THERE MUST BE A WAY FOR THE PROCESS 3 TO

DETECT WHEN A PREVIOUSLY DEFINED TRANSITION

DETRACTS FROM A CURRENT CONDITION ++ 5 ++
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Therefore in analyzing the subconditions #(x''i: (b)) and

# (x''i: (g)), we have found 1 transition to contribute to

#(x''i: (b)) > #(x''i: (g)) :

I. IF PiNOF TRANTO PiBAD, # (x''i: (B)=#(x''i: (b))+l

# (X''i: (G)=# (X''i: (G))-i BY PBADRT

2. OUTPUT N IF ALL(X''i: (n)) :

ANALYZE THE CONDITION UNDER WHICH THE OUTPUT CHARACTERISTIC CAN OCCUR

TO DETERMINE THE TRANSITIONS THAT AFFECT THE CONDITION:

- ALL(X''i: (n)) : find the transitions that affect this condition

One way in which analysts represent the transition to a system

state in which all x inputs are n is to keep track of the number

of x inputs that are n and to determine when that number equals

the total number of possible x values. Therefore, an analyst

would change the condition ALL(X''i: (n)) to #(x''i: (n)) = 3) where

3 is the total number of x inputs as determined by the BBD

specification. Therefore, the analyst tries to find the
transitions that contributes to #(x''i: (n)) :

FOR SOME OPERATIONS (SUCH AS THE OPERATION 'ALL') THE

REPRESENTATION OF THE CONDITION IS CHANGED IN ORDER TO

MODEL IT LATER. ++ 3 ++

- # (x''i: (n)) : find the transitions that affect this condition

As in #(x''i: (b)) and # (x''i: (g)) , find the transitions that

contribute to x' 'i: (n) and then change any transitions to
reflect a contribution to # (x' 'i: (n))

- x''i: (n) : find the transitions that affect this condition:

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME
OUTPUT CHARACTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT N IF PiNO OP

ANALYZE THE CONDITION (PiNO OP) UNDER WHICH THE OUTPUT

CHARACTERISTIC (N) CAN OCCUR TO DETERMINE THE TRANSITIONS

THAT AFFECT THE CONDITION:

- PiNO OP is a fault state of component P that results when

P fa_Is by fault NO OP (as specified in the BBD definition
of P) . Therefore, the transition that contributes to PiNO OP

is:

P's TRANSITION:
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2. IF PiNOF TRANTO PiNO OP BY PiNO OPRT ,

THE TRANSITION IS CHANGED TO REFLECT THE CHANGE

TO THE CONDITION BEING ANALYZED (x''i: (n)) ++ 4 ++

2. IF PiNOF TRANTO PiNO OP, x''i: (n) BY PiNO OPRT

THE TRANSITION IS CHANGED TO REFLECT THE CHANGE TO THE CONDITION

BEING ANALYZED # (x''i: (n))

2. IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(X''i: (N))+I BY
PiNO OPRT

- Again, look at previously defined transitions and determine

whether or not they detract from #(x''i: (n)) : transition #i

does not. But notice that the newly defined transition #2

detracts from #(x''i: (g)) . Therefore this transition must

be changed to reflect the affect on #(x''i:.(g)) :

2. IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(X''i: (N))+I,

# (X''i: (G)=#(X''i: (G))-I,
BY PiNO OPRT

NOT ONLY DOES PROCESS 3 HAVE TO CHECK ALL PREVIOUS TRANSITIONS

FOR AN DETRACTORY EFFECT ON THE CURRENT CONDITION BEING

ANALYZED, BUT MUST ALSO CHECK ALL CURRENTLY DEFINED TRANSITIONS

AGAINST ANY PREVIOUSLY DEFINED CONDITIONS. ++ 5 ++

3. OUTPUT G IF # (X''i: (G)) > # (X''i: (B)) :

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY:

- #(X''i: (g)) : find the transitions that affect this condition:

- this condition has already been analyzed

- #(X''i: (b)) : find the transitions that affect this condition:

- this condition has already been analyzed

- no more transitions found

The final output for this process is:

OUTPUT DEFINITION:

OUTPUT x' : (b) IF # (X''i: (b)) > #(X''i: (g))

OUTPUT x' . (n) IF # (X''i: (n))=3)

OUTPUT x' : (g) IF # (X' 'i: (g)) > # (X' 'i: (b))

TRANSITIONS:

I . IF PiNOF TRANTO PiBAD,# (X' 'i: (B)=# (X''i: (B)) +i,

# (X''i: (G)=# (X''i: (G))-i BY PiBADRT
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2 .
IF PiNOF TKANTO PiBAD,# (x''i: (N)=#(x''i: (N))+I,

# (x''i: (G)--#(x''i: (G))-I
BY p iBADRT
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The following is an overview of the processing involved in examplel for

process3. This example illustrates the reasoning behind the process flow

(shown in small letters) and then shows a procedural algorithm that could

be used to implement the reasoning (shown in ALL CAPITALS)

STEP 16 in examl.trace.abs: PROCESS 3 in component SYSTEM1:

COMPONENT SYSTEM: PROCESS3

GIVEN:

FOR A:

TRANSITIONS:

i. IF PiNOF TRANTO PiBAD,#(x''i: (B)=#(x''i: (B))+I,

# (x''i: (G)=# (x''i: (G))-I

2 ° IF PiNOF TRANTO PiBAD,# (x''i: (N)=#(x''i: (N))+I,

# (x''i: (G)=#(x''i: (G))-I

OUTPUT DEFINITION:

OUTPUT B IF #(x''i: (B)) > #(x''i: (G))

OUTPUT N IF # (x''i: (N))=3)

OUTPUT G IF #(x''i: (G)) > # (x''i: (B))

BY P BADRT

BY P BADRT

FOR B:

TRANSITIONS:

i. IF BNOF TRANTO BNO-OP BY BNO-OPRT

OUTPUT DEFINITION:

OUTPUT G IF x' (g) AND BNOF
OUTPUT B IF x' (b) AND BNOF

OUTPUT N IF (x' (n) AND BNOF) OR BNO-OP

DESIRED OUTPUT:

OUTPUT DEFINITION:

OUTPUT B IF BNOF AND (# (x' 'i: (B)) > # (x''i: (G)))

OUTPUT N IF (BNOF AND (#(x''i: (N))=3)) OR BNO-OP

OUTPUT G IF BNOF AND (# (x''i: (G)) > # (x''i: (B)))

TRANSITIONS :

i. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

#(X''i: (G)=# (X''i: (G))-I BY P BADRT

2 ° IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(X''i: (N))+I,

#(X' 'i: (G)=# (X''i: (G))-I BY P NO OPRT

DISCUSSION: See examl.proc3.10.abs

This step in example 1 will show how process 3 combines

component models that had previously been defined for

subcomponents. In this example subcomponents A and B

abstract models will be combined to form component SYSTEM1

abstract model. Previously process 3 was instantiated to

form component A abstract model from components P and Voter.
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STEP i: Look at the subcomponent that produces the final

output: component B.

COMPONENT B'S DEFINITION:

OUTPUT B IF x' (b) AND BNOF

OUTPUT G IF x' (g) AND BNOF

OUTPUT N IF (x' (n) AND BNOF) OR BNO-OP

B'S TRANSITIONS:

i. IF BNOF TRANTO BNO-OP BY BNO-OPRT

ANALYZE EACH POSSIBLE OUTPUT CHARACTERISTIC SEPARATELY:

i. OUTPUT B IF x' : (b) AND BNOF

Stated as: the output is bad if the input x' is bad and if

component B is not failed. In order to find the transitions that

effect the output being bad, find the transitions that

contribute to and detract from the input x' being bad and the

transitions contributing and detracting from BNOF.

ANALYZE THE CONDITION x' : (b) AND BNOF UNDER WHICH THE

OUTPUT CHARACTERISTIC (B) CAN OCCUR

TO DETERMINE THE TRANSITIONS THAT AFFECT THE CONDITION:

- x' : (b) AND BNOF: find the transitions that affect these

conditions:

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY

i. BNOF: find the transitions that affect this condition:

2 °

- BNOF is a no fault state and there is no transition

that leads to this state.

x' : (b) : find the transitions that affect this

condition:

Since this is an input to component B, look at

component A's definition that outputs x' : (b) .

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME
OUTPUT C_CTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

A's OUTPUT DEFINITION:

OUTPUT x' : (b) IF # (x''i: (B)) > # (x''i: (G))

ANALYZE THE CONDITION (#(x''i: (B)) > #(X''i: (G))) UNDER

WHICH THE OUTPUT CHARACTERISTIC (b) CAN OCCUR TO
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DETERMINETHE TRANSITIONS THAT AFFECT THE CONDITION:

- since component A is an intermediate level component,

an abstract model has been defined for its output
characteristics. Further the transitions that

both contribute and detract from the output
characteristics have been defined:

I. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

#(X''i: (G)=# (X''i: (G))-I BY P BADRT

2. IF PiNOF TRANTO PiNO-OP, # (X''i: (N)=# (X''i: (N)) +i,
#(X''i: (G)=# (X''i: (G))-I BY P NO OPRT

- at this point we have:

B: OUTPUT B IF x' : (b) AND BNOF

A: OUTPUT x' : (b) IF #(X''i: (B)) > # (X''i: (G))
and transitions :

i. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,
#(X''i: (G)--# (X''i: (G))-l BY P BADRT

2. IF PiNOF TRANTO PiNO-OP,#(X''i: (N)=#(X''i: (N))+I,

#(X''i: (G)=#(X''i: (G))-i BY P NO OPRT

that reference data variables of A's output definition:

Therefore, change the output definition for B to

B: OUTPUT B IF (#(X''i: (B)) > #(X''i: (G))) AND BNOF
and eliminate the reference to x' .

Note that here, the output definition is changed to
reference the same variables as the transitions

found whereas in other situations in examl, the

transitions were changed to reflect the variables in

the output definition.

WHEN A INPUT CHABACTERISTIC (x' : (b)) HAS BEEN ANALYZED

AND TRANSITIONS HAVE BEEN FOUND, EITHER THE TRANSITIONS
WILL HAVE TO BE CHANGED TO REFLECT AN AFFECT ON THE

INPUT CHARACTERISTIC OR THE OUTPUT DEFINITION BEING

ANALYZED WILL HAVE TO BE MODIFIED TO REFERENCE THAT

SAME VARIABLES AS THE TRANSITIONS REFERENCE. ++ 4 ++

- the result of analyzing x' : (b) :

OUTPUT B IF (# (X''i: (B)) > # (X''i: (G))) AND BNOF

i. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

# (X' 'i: (G)=# (X''i: (G))-I BY P BADRT

2. IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(XT'i: (N))+I,

# (X' 'i: (G)=# (X''i: (G))-i BY P NO OPRT

A/qALYZE EACH POSSIBLE OUTPUT CHAPdICTERISTIC SEPARATELY:

2. OUTPUT N IF (x' (n) AND BNOF) OR BNO-OP

ANALYZE THE CONDITION (x' (n) AND BNOF) OR BNO-0P UNDER WHICH
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THE OUTPUT CHARACTERISTIC (n) CAN OCCUR TO DETERMINE THE
TRANSITIONS THAT AFFECT THE CONDITION:

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY

I. x' (n) AND BNOF - find the transitions that contribute to

this condition

through the same reasoning as in the analysis of OUTPUT B ...,

the following transitions and output definition will be
determined:

OUTPUT N IF (#(x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS: same as above

2 . BNO-OP - find the transitions that contribute to

this condition

- BNO OP is a fault state of component B that results when

B fails by fault NO OP (as specified in the BBD definition

of B) . Therefore, _he transition that contributes to BNO OP

is:

B's TRANSITION:

3. IF BNOF TRANTO BNO OP BY BNO OPRT

WHEN A INPUT CHARACTERISTIC (x' : (b)) HAS BEEN ANALYZED

AND TRANSITIONS HAVE BEEN FOUND, EITHER THE TRANSITIONS
WILL HAVE TO BE CHANGED TO REFLECT AN AFFECT ON THE

INPUT CHARACTERISTIC OR THE OUTPUT DEFINITION BEING

ANALYZED WILL HAVE TO BE MODIFIED TO REFERENCE THAT SAME

VARIABLES AS THE TRANSITIONS REFERENCE. ++ 4 ++

Since the transition (3) and the output definition both

refer to the same variable (BNO-OP), no changes to the

transition or the output definition need to be made.

CHECK ALL PREVIOUS TRANSITIONS FOR AN DETRACTORY EFFECT ON

THE CURRENT CONDITION BEING ANALYZED AND CHECK ALL CURRENTLY

DEFINED TRANSITIONS AGAINST ANY PREVIOUSLY DEFINED CONDITIONS.

++ 5 ++

- no such interrelationship

3. OUTPUT G IF x' (g) AND BNOF:

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY:

- x' (g) : find the transitions that affect this condition:

- returns same transitions as in x" : (b)
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- changes output definition to

OUTPUT G IF BNOF AND (#(x''i: (g)) > #(x''i(b)))

- BNOF: find the transitions that affect this condition:

- this condition has already been analyzed

- no more transitions found

The final output for this process is:

OUTPUT DEFINITION:

OUTPUT B IF BNOF AND (# (x''i: (b)) > #(x''i(g)))

OUTPUT G IF BNOF AND (# (x''i: (g)) > #(x''i(b)))

OUTPUT N IF (# (x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS :

i. IF PiNOF TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

#(X''i: (G)=# (X''i: (G))-I BY P BADRT

2. IF PiNOF TRANTO PiNO-OP, #(X''i: (N)=#(X''i: (N))+Y,

#(X''i: (G)=#(X''i: (G))-I BY P NO OPRT
3. IF BNOF TRANTO BNO-OP BY BNO-OPRT
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APPENDIX D: MANUAL TRACE OF VOTED REDUNDANT PROCESSORS

WITH REDUNDANCY MANAGEMENT

The following is a trace of the algorithms for the

Reliability model generator for the example system shown in

figure D.I. The Building Blocks Definition for the system

is shown in figure D.2. A feedback signal, r, is added

between the voter and the processors, P, such that if an

input signal to the VOTER disagrees with the majority of

input signals, the VOTER outputs a "disable" signal, r, to

the corresponding processor. The processors, P, behave as

in example I, except that upon receiving a disable signal

from the voter "r=l", the processors output nothing (nil).

Also, the failure mode, BAD, for the processor is changed so

that it outputs corrupted data only if r is not i. See fig-

ure C.2 for the changes in the BBD.

The System Definition is shown in figure D.3. The

desired output of the system is shown in figure D.4. Most of

the SYSD may be generated automatically by the system based

on the user specifying the highest level component to be

analyzed (SYSTEM in example i) and specifying failure modes

for the lowest level components. However, some connections

between components are not specified in the BBD, and there-

fore, need to. be entered by the user. This is implemented

as an interactive process between the system and the user.

Figure D.2 indicates two connections (denoted by *i* and

*3*) that are not specified in the BBD. Finally, if a com-

ponent is redundant, the user is prompted to enter the

redundancy level (denoted by *2* in figure D.2) .

These trace was performed according to the algorithms

as they existed in September, 1987. Changes to these algo-

rithms are itemized in appendix A. Despite the changes, the

algorithms of appendix B retain the numerical cross refer-

ence that is used to identify the steps in the trace.
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COMPONENT NAME: SYSTEM PARENT COMPONENT: EXAMPLE1

FUNCTIONAL SPECIFICATIONS:

INPUT x;OUTPUT y

SUBCOMPONENTS: A,B

SUBCOMPONENT STRUCTURE:

_A::INPUT x:OUTPUT x';

B::INPUT x';OUTPUT y;

COMPONENT NAME: A PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT x;OUTPUT x';

SUBCOMPONENTS : P (i) , VOTER
SUBCOMPONENT STRUCTURE :

FA (P(i)) :: (INPUT x,r(i); OUTPUT x'';

VOTER:: FA (P(i)) : INPUT x'' (i); OUTPUT ×' -

OUTPUT r(i) to P(i);

COMPONENT NAME: P PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

INPUT x,r;

OUTPUT x'' = x i r=0;

:n l r=l:

FAILURE MODES:

NO-OP: OUTPUT x'' : (n)

BAD: OUTPUT x'' : (b) t r=0

COMPONENT NAME: VOTER PARENT COMPONENT: A

FUNCTIONAL SPECIFICATIONS:

FA (P(i)) : : INPUT x' ' (i) ;

OUTPUT x' = N f ALL(x'' (i) : (n))

t i FA z<>t, x' ' (i) : (^n) : :

#(x'' (i)=t) > #(x'' (i)=z)

OUTPUT r (i) = 0 I x'' (i) = x'

1 i x'' (i) <> x' ;

COMPONENT NAME: B PARENT COMPONENT: SYSTEM

FUNCTIONAL SPECIFICATIONS:

INPUT x';OUTPUT y = x';

FAILURE MODES:

NO-OP: OUTPUT y: (n)

Figure D2. BBD for Example 2
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COMPONENT NAME: SYSTEM1

REDUNDANCY: none

I/O CONNECTIONS: none

BBD COMPONENT:

PARENT: none

SYSTEM

COMPONENT NAME: A1

REDUNDANCY: none

BBD COMPONENT: A

PARENT: SYSTEM1

I/O CONNECTIONS: x from SYSTEMI.x

x' to Bl.x' *I*

COMPONENT NAME: P(n)

REDUNDANCY: 3 *2*

BBD COMPONENT: P

PARENT: A1

I/O CONNECTIONS: x from Al.x

r from VOTER.r(n)

x'' to VOTERI.x'' (n)

COMPONENT NAME: VOTER1

REDUNDANCY: none

BBD COMPONENT:

PARENT: A1

I/O CONNECTIONS: x'' (n) from P(n).x''

x" to A1. x'

r(i) to Al.r

VOTER

BBD COMPONENT: B

PARENT: SYSTEM1

COMPONENT NAME: B1

REDUNDANCY: none

I/O CONNECTIONS: ×' from Al.x'

y to SYSTEMI.y

*3*

key: *n* indicates user input required

Figure D3. SYSD _r Example 1
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OUTPUT: ASSIST FILE

SPACE = (B: 0...1),#B:0..3,#G: 0..3, #N: 0..3 #PNOF:0..3) N: 0..3, #PNOF: 0..3);

DEATHIF (B=0 AND (#B>#G)) OR (#N,,3 AND B=0) OR B=I

TRANSITIONS:

1. IF #PNOF>0 TRANTO #PNOF=#PNOF-1, #B=#B+I, #G=#G-1 BY P_BADRT

2. IF #PNOF>0 TRANTO #PNOF=#PNOF-1, #N=#N+I, #G=#G-1BY P NO OPRT

3. IF #B>0 AND #(3> #B, TRANTO #N=#N+I, #B=#B-1 BY T (VOTER, I_ )

4. IF #(3>0 AND #B> #(3 TRANTO #N=#N+I, #G=#G-1 BY T (VOTER, Pt )

5. IF B=0 TRANTO B=I BY BNO-OPRT

Figure D4. Example 2 Output
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THIS IS A TRACE OF EXAMPLE 2 FOR ALL PROCESSES EXCEPT PRO-

CESS3 AND PROCESS 2X WHICH ARE REFERENCED HERE WHEN INVOKED,

BUT THE TRACES FOR THEIR ALGORITHMS ARE CONTAINED IN OTHER

FILES. THE DOUBLE LINED ****** SEPARATE THE COMPONENT

DOMAINS. THE ####### BOX ILLUSTRATES THE INFORMATION PASSED

FROM THE PARENT COMPONENT TO ITS SUBCOMPONENTS.

EACH NUMBERED STEP INDICATES THE CONTROL FLOW OF THE

PROCESSES FOR THIS EXAMPLE. THEY ARE NOT LISTED IN NUMERIC

ORDER. RATHER, THE STEPS FOR EACH COMPONENT ARE LISTED
TOGETHER TO ILLUSTRATE THE RECURSIVE TREE-LIKE BEHAVIOR OF

THE ALGORITHMS. WHEN ONE COMPONENT CALLS ITS SUBCOMPONENT

OR WHEN A SUBCOMPONENT PROCESS RETURNS TO ITS PARENT, THE
STEP NUMBER IS GIVEN TO INDICATE WHAT TRACE STEP IS NEXT.

THIS IS REPRESENTED BY A 'GOTO X' OR 'RETURN TO X' OR SIMPLY

' (X) '

FOR EACH STEP, THE PROCESS BEING INVOKED IS LISTED, AND EACH

SUBSEQUENT NUMBER (OR LETTER) REFERENCES THE STEP IN ALGO-
RITHM FOR THAT PROCESS.
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I. INITIALIZER:

-highest level component is SYSTEM1
-fill in table

########################################################
# TRACE TABLE: SYSTEM1

# function: history outside effects

# input x;output y none none
########################################################

-pass control to SYSTEM1

2 ° IN SYSTEM I: not lowest level

PROCESS i:

I. set up trace tables for components A and B

########################################################
# TRACE TABLE: A

# function history outside effects

# input x; output x' none none
########################################################
# TRACE TABLE: B

# function history outside effects

# input x'; output y none
########################################################

2. set up priority Q (fifo)

3. call Process 2

PROCESS 2: take top element off list (A) and instantiate (3)

II. IN SYSTEM1:

PROCESS 2:

I. update external effects for component B

2. instantiate next subcomponent - B pass to 12

- returned output definitions and transitions for B

3. no more components - pass control to process 3 (16)

16. PROCESS 3 in SYSTEM1:

TRANSITIONS:

GIVEN:

FOR A:

OUTPUT DEFINITION: OUTPUT x '

N IF #((x''i- (n))=3

G IF # (x''i: (g)) > # (x' 'i: (b))

B IF #(x''i: (b)) > #(x''i: (g))

TRANSITIONS:

i. IF PiNOF AND r=0 TRANTO PiBAD, # (X' 'i: (B))=# (x''i: (B)+I) ,
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#(X''i: (G)=#(X''i: (G))-I BY P BADRT

2. IF PiNOF AND r=0 TRANTO PiNO_OP, #(X''i: (N))=#(X''i: (N)+I),
#(X''i: (G))--#(X''i: (G))-I BY P NO OPRT

3. IF PiBAD and r=0 and #(x''i: (g)) > #(x''i: (b))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

#(X''i: (B))=#(X''i: (B))-I BY T(voter,pi)

4. IF PiNOF and r=0 and #(x''i: (b)) > #(x''i: (g))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

#(X''i: (G))=#(X''i: (G))-I BY T(voter,pi)

FOR B:

TRANSITIONS:

I. IF BNOF TRANTO BNO-OP BY BNO-OPRT

* 4.

OUTPUT DEFINITION: for Y

G IF x' (g) AND BNOF

B IF x' (b) AND BNOF

N IF (x' (n) AND BNOF) OR BNO-OP
RESULT:

OUTPUT DEFINITION: for Y

OUTPUT B IF BNOF AND (#(x''i: (b)) > #(x''i(g)))

OUTPUT G IF BNOF AND (#(x''i: (g)) > #(x''i(b)))

OUTPUT N IF (#(x''i: (n))=3) AND BNOF) OR BNO-OP

TRANSITIONS RETURNED :

I. IF PiNOF AND r=0 TRANTO PiBAD, #(X''i: (B))=# (X''i: (B)+I) ,
#(X''i: (G)=#(X''i: (G))-I BY P BADRT

2. IF PiNOF AND r=0 TRANTO PiNO OP, #(X''i: (N))=#(X''i: (N)+I),
#(X''i: (G))=#(X''i:_G))-I BY P NO OPRT

3. IF PiBAD and r=0 and #(x''i: (g)) > # (x''i: (b))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

#(X''i: (B))=#(X''i: (B))-I BY T(voter,pi)

IF PiNOF and r=0 and #(x''i: (b)) > #(x''i: (g))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

#(X''i: (G))=#(X''i: (G))-I BY T(voter,pi)
* 5. IF BNOF TRANTO BNO-OP BY BNO-OPRT
****************************************************************

see examl.proc3.16.abs: process similarity is such that separate
trace not documented

3. IN COMPONENT A: not lowest level

PROCESS i:

i. set up trace tables for components P and VOTER

########################################################
# TRACE TABLE: P(i)

# function history outside effects

# input x; output x''- • none none

########################################################
# TRACE TABLE: VOTER
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# function history outside effects
# input x'';output x' none ....
########################################################

°

3.
set up priority Q (fifo - rules 1 and 3)
call Process 2

PROCESS 2: take top element off list (P) and instantiate (4)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$55555555555555555555
$ RETURNED FROM LOWER LEVEL: COMPONENT P

$ TRANSITIONS:

$ i. IF PiNOF TRANTO PiBAD BY PBADRT

$ 2. IF PiNOF TRANTO PiNO-OP BY PNO OPRT

$ OUTPUT DEFINITION:

$ OUTPUT NIL IF PiNO OP

$ OUTPUT BAD IF PiBAD

$ OUTPUT GOOD IF PiNOF

555555555555555555555555555555555555555555555555555555555

o IN COMPONENT A:

PROCESS 2:

I. update other effects for VOTER - rule 1
########################################################
# TRACE TABLE: P(i)

# function history outside effects

# input x; output x''', none none

########################################################
# TRACE TABLE: VOTER

# function history outside effects

# input x'';output x' none x'' (i) : (g,b,n)
########################################################

2. Take top element off list (V) and instantiate (8)

$$$$$$$$$$$$$$$555555555555555555555$55555555555$$5555555
$ RETURNED FROM LOWER LEVEL: COMPONENT VOTER

$ TRANSITIONS: - none

$ OUTPUT DEFINITION:

$ OUTPUT x'

$ n I all(x''i: (n)

$ g I #(x''i: (g)) > #(x''i: (b))

$ b I #(x''i: (b)) > #(x''i: (g))

$ OUTPUT R

$ 0 I x''i: (g) and # (x''i: (g)) > # (x''i: (b))

$ ( x''i: (b) and #(x''i: (b)) > #(x''i: (g))

$ 1 l x''i: (b,n) and #(x''i: (g)) > # (x''i: (b))

$ I x''i: (g,n) and #(x''i: (b)) > # (x''i: (g))

555555555555555555555555555555555555555555555555555555555

9. IN COMPONENT A:

PROCESS2:

- finished with all subcomponents, pass to PROCESS3
*****************************************************************

i0. COMPONENT A: PROCESS3

GIVEN P's
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for x' : OUTPUT N IF PiNO OP OR r=l

OUTPUT B IF PiBAD AND r=0

OUTPUT G IF PiNOF AND r=0
IF PiNOF TRANTO PiBAD BY PBADRT

IF PiNOF TRANTO PiNO-OP BY PNO-OPRT

VOTER'S OUTPUT x'

n i all(x''i: (n)

g I #(x''i: (g)) > #(x''i: (b))

b I #(x''i: (b)) > #(x''i: (g))
OUTPUT R

0 l x''i: (g) and #(x''i: (g)) > #(x''i: (b))

I x''i: (b) and # (x''i: (b)) > # (x''i: (g))

1 i x''i: (b,n) and #(x''i: (g)) > #(x''i: (b))

I x''i: (g,n) and #(x''i: (b)) > #(x''i: (g))

OUTPUT x '

N IF # ((x''i: (n))=3

G IF # (x''i: (g)) >
B IF #(x''i: (b)) >

TRANSITIONS :

i. IF PiNOF AND r=0

#(X''i: (G)=# (X''i: (G)

2. IF PiNOF AND r=0 TRANTO PiNO OP,

#(X''i: (G))=# (X''i:_G))

3. IF PiBAD and r=0 and #(x''i: (g))

TRANTO r=l, # (X''i: (N))=# (X''

# (X''i: (B))=# (X''i: (B))

4. IF PiNOF and r=0 and # (x''i: (b))

TRANTO r=l, #(X''i: (N))=#(X''

#(x''i: (b))

# (x''i: (g))

TRANTO PiBAD, # (X''i: (B))=# (X''i: (B)+I) ,
)-I BY P BADRT

#(x''i: (_))=#(x''i: (N)+I),
-i BY P NO OPRT

> # (x' 'Y: (_))
i : (N)) +i,

-i BY T(voter, pi)

> #(x''i: (g))

i : (N)) +i,

* #(X''i: (G))=#(X''i: (G))-I BY T(voter,pi)

- see exam2.proc3.10.abs for description of this step

4. IN COMPONENT P: lowest level

PROCESS Ix:

i. create transitions for each fault possibility
IF PiNOF TRANTO PiBAD BY PBADRT --> fault: BAD

IF PiNOF TRANTO

2. substitute into

fault BAD:

OUTPUT x''

X I I

fault NO-OP:

OUTPUT x''

M r,

nofault: x''

X; ;

3. Propagate:

PiNO-OP BY

functional
PNO-OPRT --> fault: NO-OP

definition:

: (b) from x i r=0

: (n) I r=l (* default *)

: (n) from x i r=0

:(n) i r=l

: (g) from x i r =0

: (n) i r=l
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4 o

5.

OUTPUT x' ' : (b)

x' ': (n)
OUTPUT x'' : (n)

x' ':(n)
OUTPUT x' ' : (g)

x' ':(n)
no history to analyze

r=0 from fault BAD

r=l

r=0 from fault NO-OP

r=l

r=0

r=l

output characteristics defined - don't call process 2x

,

6. PROCESS 3x: Define output definition for each output characteristic

OUTPUT (output characteristic)

IF (function define in 2x) and (fault state)

OUTPUT N IF ((r=0 OR r=l) AND PiNO OP) OR ((r=l) AND PiBAD)

OR (r=l and PiNOF)

- simplify: OUTPUT N IF PiNO OP OR r=l

OUTPUT B IF (r=0) AND P BAD
OUTPUT G IF PiNOF AND r=--0

return to parent (A) (7)

8. IN COMPONENT VOTER: lowest level

PROCESSIX:

- no faults to model (according to BBD) so only normal

behavior to consider with external effects given

PROCESS 2x: --> FA (P(i)) : input x''i FROM P(i)

output x' --> N I all x''i: (i)
J FA z<>x' , FA x' 'i: (^n) :

#(x''i=x') > #(x''i=z)

output r(i) 0 i x''i=x'

1 I x' 'i<>x'
FOR TRACE SEE PROCESS2X.VOTER

BASICS: take each "I" as a separate domain

i. substitute outside data characteristic possibilities in function

2. apply rules to propagate characteristics through function

3. for all resulting output characteristics

- define output definition

(* at end, all non external data variables (such as z above)

(* will be gone, all quantifiers will be instantiated (gone)

(* all references to the output variable on right of I is gone

RESULT:

SEE TRACE TABLE

return to A (7)
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*************************************************************************

12 IN B: lowest level
PROCESSIx:

i. create transitions for each fault possibility
IF BNOFTRANTOPiNO-OP BY BNO-OPRT

2. substitute into functional definition:
input x'; OUTPUTy: (n)

3. Propagate: no propagation necessary
4. no history to analyze
5. output characteristic defined: don't call process2x

for NOOP fault
6. call process2x for NOFstate and x' : (g,b,n) - goto 14

- return from 14

13
call process3x after all fault cases have been analyzed - goto 15

14 PROCESS 2x in B for normal behavior

GIVEN input x';output y from x'

x' : (g,b,n)

UNSPECIFIED FUNCTION:

y = 0(x' : (g,b,n))

i. for characteristic x' :g

- apply propagation rule: y=o(g) --> g

OUTPUT y: (g) IF x' : (g)
2. for characteristic x' :b

- apply propagation rule:

OUTPUT y: (b) IF x' : (b)
3. for characteristic x' :n

- apply propagation rule:

OUTPUT y: (n) IF x' : (n)

y = O(b) --> b

y = O(n) --> n

no combining of common characteristics

15. PROCESS 3x: Define output definition for each output characteristic

OUTPUT (output characteristic)

IF (function define in 2x) and (fault state)

OUTPUT Y: (N) IF () AND BNO-OP

OR x' : (n) AND BNOF

OUTPUT Y: (g) IF x' : (g) AND BNO-OF

OUTPUT Y: (b) IF x' : (b) AND BNO-OF

return to parent (systeml in step II

PROCESS 4:

GIVEN:

OUTPUT DEFINITION: for Y

OUTPUT B IF #(x''i: (b)) > #(x''i(g))

OUTPUT G IF #(x''i: (g)) > #(x''i(b))

D-12



OUTPUTN IF (#(x''i: (n))=3) ANDBNOF)OR BNO-OP

TRANSITIONS:
I. IF PiNOF ANDr=0 TRANTOPiBAD, #(X''i: (B))=#(X''i: (B)+I),

#(X''i: (G)=#(X''i: (G))-I BY P BADRT
2. IF PiNOF ANDr=0 TRANTOPiNO_OP, # (X' 'i: (N))=# (X' 'i: (N)+I) ,

# (X' 'i: (G))=# (X' 'i: (G))-I BY P NO OPRT

3. IF PiBAD and r=0 and # (x''i: (g)) > #(x' 'i: (b))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

# (X' 'i: (B))=# (X''i: (B))-I BY T(voter,pi)

4. IF PiNOF and r=0 and #(x''i: (b)) > # (x''i: (g))

TRANTO r=l, #(X''i: (N))=#(X''i: (N))+I,

#(X''i: (G))=#(X''i: (G))-I BY T(voter,pi)

5. IF BNOF TRANTO BNO-OP BY BNO-OPRT

I. APPLY MODEL REDUCTION TECHNIQUES:

STEP i: find superfluous variables

PiNO OP,r=0

STEP 2: combines superfluous variables for each component state
and for each data variable

- only 1 instance for each variable: can't combine

STEP 3: heuristic d: for redundant components:

- can't apply since PiBAD must be kept track of

FINAL MODEL: no changes
TRANSLATING INTO ASSIST:

The reliability question was: R(y: (b) or Y: (n))
Therefore the death state would be:

DEATH IF:{ BNOF AND (#(x''i: (b)) > #(x''i(g))) )

(* output definition for Y: (b) *)
OR (#(x' 'i: (n))=3) AND BNOF) OR BNO-OP }

(* output definition for Y: (n) *)

The variables will be represented as follows:

I. a state vector element for each component state is created. The

number of values possible for the element will equal the number of

states for the component with value 0 being the NOF state:

For redundant components, the SYSD will determine the number

of components: (* example: (SYSD say P(3) *) in examl.

B[0..i]
Pl[0..2]
m2[0..2]
P3[0..2]

(* 0=BNOF, I=BNO-OP *)

(* 0=PNOF, I=PBAD, and 2=PNO-OP *)

2 . For variables #(x''i: (b)), #(x''i(g))), and #(XI: (N)), a integer

variable for each will be set up.

#B: integer
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.

#G: integer

#N: integer

other variables will be represented in the same manner as in i.

A state vector element for each variable will be created, and

the number of values possible for the element will equal th
number of values or characteristics for the variable:

RI[O..1]

R2[0..I]

R310..I]

The transitions and death state will be changed to reflect the
representation:

DEATH IF:{ B=0 AND (#B > #G )

OR (#N=3 AND B=0 )
OR B=I

TRANSITIONS:

la. IF PI=0 AND r=0 TRANTO PI=I, #B=#B+I, #G=#G-I

lb. IF P2=0 AND r=0 TRANTO P2=I, #B=#B+I, #G=#G-I

ic. IF P3=0 AND r=0 TRANTO P3=I, #B=#B+I, #G=#G-I

BY PBADRT

BY PBADRT

BY PBADRT

2a. IF PI=0 AND r=0 TRANTO PI=2, #N=#N+I, #G=#G-I

2b. IF P2=0 AND r=0 TRANTO P2=2, #N=#N+I, #G=#G-I

2c. IF P3=0 AND r=0 TRANTO P3=2, #N=#N+I, #G=#G-I

BY PNO OPRT

BY PNO OPRT

BY PNO OPRT

3a. IF PI=I and r=0 and #G > #B TRANTO RI=I, #N=#N+I, #B=#B-I

BY T (voter, pi)

3b. IF P2=I and r=0 and #G > #B TRANTO R2=I, #N=#N+I, #B=#B-I

BY T (voter,pi)

3c. IF P3=I and r=0 and #G > #B TRANTO R3=I, #N=#N+I, #B=#B-I

BY T (voter,pi)

4a. IF PI=0 and r=0 and #B > #G TRANTO RI=I, #N=#N+I, #G=#G-I

BY T (voter, pi)

4b. IF P2=0 and r=0 and #B > #G TRANTO R2=I, #N=#N+I, #G=#G-I

BY T(voter,pi)

4c. IF P3=0 and r=0 and #B > #G TRANTO R3=I, #N=#N+I, #G=#G-I

BY T (voter,pi)

5. IF B=0 TRANTO B=I BY BNO-OPRT

Note that this is a much bigger model that the one created in

examl. This is not so much because the problem was more complicated

but rather because the model reduction techniques of process 4 that

have thus been defined were not applicable to this model.
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This is an illustration of the reasoning involved in process2x for

the voter component in example 2.

FUNCT I ON :

FA (P(n),@) : input x''i: (n)FROM P(n);

OUTPUT x' --> N I (ALL x' ' i: (n))

I FA z <> x', FA x''i: (n) : #(x''i=x') > #(x''i=z)

OUTPUT r(i) 0 I x''i=x'

1 I x''i<>x'

PROBLEM:

RESULT:

Given the above function and the following input conditions:

x''i: (g,b,n)

Define the characteristics of the output as a function of

its inputs

OUTPUT x' : (n) I all(x''i: (n))

OUTPUT x' : (g) I #(x''i: (g)) > # (x''i: (b))

OUTPUT x' : (b) I # (x''i: (b)) > # (x''i: (g))

OUTPUT R=0 I x''i: (n) and ALL(x''i: (n))

I x' 'i: (g) and # (x''i: (g)) > #(x''i: (b))

I x''i: (b) and # (x''i: (b)) > #(x''i: (g))

OUTPUT R=I I x''i: (b,n) and # (x''i. (g)) > # (x''i: (b))

I x''i: (g,n) and # (x''i: (b)) > #(x''i: (g))

DISCUSSION: see examl.proc2x.voter

STEPS: for the first two sentences:

FA (P(n),@) : input x''i: (n)FROM P(n) ;

OUTPUT x' --> N I (ALL x''i: (n))

I FA z <> x', FA x''i: (n) : #(x''i=x') > #(x''i=z)

the processing is the same as in examl.proc2x.voter

SENTENCE 3: OUTPUT r(i) 0 I x''i=x'

1 i x''i<>x'

TAKE EACH DOMAIN SEPARATELY:

FIRST DOMAIN: OUTPUT r(i) 0 I x''i=x"

I ° SUBSTITUTE IN KNOWN CHARACTERISTICS OF VARIABLES:

A simple substitution similar to the previous substitutions will

not suffice:

OUTPUT r(i) 0 I x' 'i: (g,b,n)=y: (g,b,n)

There is a dependency between the x' characteristics and the x''i

characteristics which is missing in this definition. The output

definition of x' shows this dependency:
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X' : (n) I all(x''i: (n)

x' : (g) I # (x''i: (g)) > #(x''i: (b))

x' : (b) i # (x''i: (b)) > # (x''i: (g))

Therefore, in substituting in for x', the conditions underwhich x'

has a characteristic must be explicitly noted:

I. substitute in for x' : (n) and x''i: (g,b,n)

OUTPUT r(i) 0 I x''i: (g,b,n)=x' : (n) AND ALL(x''i: (n))

The additional condition ALL(x''i: (n)) will reduce the possible

characteristics of x''i from x''i: (g,b,n) to x''i: (n) and

the resulting function will be:

OUTPUT r(i) 0 i x''i: (n)=y: (n) and ALL(x''i: (n)

(* note that the propagation of x' to x''i would also result

(* x''i: (n)

2. substitute in for x' : (g) and x''i: (g,b,n)

OUTPUT r(i) 0 l x''i: (g,b,n)=y: (g) and #(x''i: (g)) > #(x''i: (b))

PROPAGATION OF x' TO x''i:

OUTPUT r(i) 0 I x''i: (g)=x' : (g) and #(x''i: (g)) > #(x''i: (b))

3. substitute in for x' : (b) and x''i: (g,b,n)

OUTPUT r(i) 0 i x,,i: (g,b,n)=y: (b) and #(x''i: (b)) > #(x''i: (g))

PROPAGATION OF x' TO x'' i:

OUTPUT r(i) 0 i x''i: (b)=x' : (b) and #(x''i: (b)) > #(x''i: (g))

The result of the substitutions, propagations:

OUTPUT r(i) 0 I x''i: (n)=y: (n) and ALL(x''i: (n)

OUTPUT r(i) 0 i x''i: (g)=Y: (g) and #(x''i: (g)) > #(x''i: (b))

OUTPUT r(i) 0 I x''i: (b)=y: (b) and #(x''i: (b)) > #(x''i: (g))

Since x' is not the outputed variable in this sentence and it is not

an input, it is an intermediate variable and therefore, it should

be eliminated from the specification:

OUTPUT r(i) 0 i x''i: (n) and ALL(x''i: (n)

OUTPUT r(i) 0 I x''i: (g) and #(x''i: (g)) > #(x''i: (b))

OUTPUT r(i) 0 i x''i: (b) and #(x''i: (b)) > #(x''i: (g))

SECOND DOMAIN: OUTPUT r(i)=l i x''i<>Y

i. SUBSTITUTE in for x' : (n) and x' 'i: (g,b,n)
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OUTPUTr(i) 1 I x''i: (g,b,n)<>x' : (n) and ALL(x''i: (n))

PROPAGATEALL(x''i: (n)) into x''i: (g, b, n) <>y: (n)
- OUTPUTr(i) 1 I x''i: (n)<>x' : (n) and ALL(x''i: (n))

This specification is complete so far as the substitutions and
propagations are concerned. However, it is irrelevant whether or
not x''i <> x' if both (or either) variable is nil. Therefore
this conditions can be considered false and the specification
eliminated.

2 . SUBSTITUTE in form x' . (g) and x''i: (g,b,n) :

OUTPUT r(i) 1 1 x''i: (g, b, n) <>x' : (g) and #(x''i: (g)) > #(x''i: (b))

PROPAGATE x' into x' ' i:

- OUTPUT r(i) 1 I x''i: (b,n)<>y: (g) and #(x''i: (g)) > #(x''i: (b))

3. SUBSTITUTE in form x' : (b) and x''i: (g,b,n) :

OUTPUT r(i) 1 I x''i: (g,b,n)<>y: (b) and #(x''i: (b)) > #(x''i: (g))

PROPAGATE x' into x' ' i:

- OUTPUT r(i) 1 I x''i: (g,n)<>y: (b) and #(x''i: (b)) > #(x''i: (g))

Again, the reference to x' may be eliminated so that the result

for r(i)=0 and r(i)=l:

OUTPUT r(i) 0 I x''i: (n) and ALL(x''i: (n)

I x''i: (g) and # (x''i: (g)) > # (x''i: (b))

I x''i: (b) and #(x''i" (b)) > #(x''i: (g))

OUTPUT r(i) 1 I x' 'i: (b,n) and #(x' 'i: (g)) > # (x' ' i: (b))

I x''i: (g,n) and # (x' 'i: (b)) > # (x' 'i: (g))
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The following is an overview of the processing involved in example2 when

process3 is invoked. This example illustrates the reasoning behind the

process flow (shown in small letters) and then shows a procedural

algorithm that could be used to implement the reasoning (shown in ALL
CAPITALS)

STEP 10 in examl.trace.abs: PROCESS 3 in component A:

COMPONENT A: PROCESS3

GIVEN P's

for x' : OUTPUT N IF PiNO OP OR r=l

OUTPUT B IF PiBAD AND r=0

OUTPUT G IF PiNOF AND r=0

IF PiNOF TRANTO PiBAD BY PBADRT

IF PiNOF TRANTO PiNO-OP BY PNO-OPRT

VOTER'S

DESIRED OUTPUT:

OUTPUT x'

n I all(x''i: (n)

g I #(x''i: (g)) > #(x''i: (b))

b I # (x''i: (b)) > #(x''i: (g))
OUTPUT R

0 I x''i: (g) and #(x''i: (g))

I x''i: (b) and #(x''i: (b))

1 I x''i: (b,n)

I x''i: (g,n)

> #(x''i: (b))

> #(x''i: (g))

and #(x''i: (g)) > #(x''i: (b))

and #(x''i: (b)) > #(x''i: (g))

OUTPUT DEFINITION: OUTPUT x'

N IF # ((x''i: (n))=3

G IF #(x''i: (g)) > # (x''i: (b))

B IF #(x''i: (b)) > #(x''i: (g))

TRANSITIONS:

i. IF PiNOF AND r=0

#(X''i:
2. IF PiNOF AND r=0

#(x''i:
3. IF PiBAD and r=0 and #

TRANTO r=l, #(X''i:

# (X''i: (B))=#
4. IF PiNOF and r=0 and #

TRANTO r=l, #(X''i:

# (X''i: (G))=#

DISCUSSION: SEE EXAMI.PROC3.10

TRANTO PiBAD, # (X''i: (B))=#(X''i: (B)+I),

(G)=# (X' 'i: (G))-I BY P BADRT

TRANTO PiNO OP, # (X' 'iT(N))=# (X''i: (N)+I) ,
(G))=# (X' 'i:_G) )-i BY P NO OPRT

(x''i: (g)) > # (x''i: (b))

(N))=#(X''i:(N))+I,

(X''i: (B))-I BY T(voter,pi)

(x''i: (b)) > #(x' 'i: (g))
(N))=# (X''i: (N))+I,

(X''i: (G))-I BY T(voter,pi)

.ABS

STEP I:

output:
Look at the subcomponent that produces the final
the voter.
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VOTEK'S DEFINITION:
OUTPUTB IF #(x''i: (B)) > # (x''i: (G))

ANALYZE EACH POSSIBLE OUTPUT CHARACTERISTIC SEPARATELY:

i. OUTPUT B IF #(x''i: (B)) > #(x''i: (G)) :

ANALYZE THE CONDITION (#(x''i: (B)) > #(x''i: (G))) UNDER WHICH THE

OUTPUT CHARACTERISTIC (B) CAN OCCUR

TO DETERMINE THE TRANSITIONS THAT AFFECT THE CONDITION:

- #(x''i: (B)) > #(x''i: (G)) : find the transitions that affect this

condition

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY

i. #(x''i: (B)) : find transitions that affect this condition:

The transitions that contribute to the number of x inputs

being bad is directly related to the transitions that

contribute to one x value being bad; find transitions that

contribute to x being bad:

FOR FUNCTIONS SUCH AS #, THERE HAS TO BE 'KNOWLEDGE'

IN THE SYSTEM TO DETERMINE WHAT CONDITION TO ANALYZE

(CALLED CONDITION OF INTEREST -COI) ++ 3 ++

x''i: (b) : find transitions that affect this conditions:

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHAgu_CTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT B IF PiBAD AND r=0

ANALYZE THE CONDITION (PiBAD AND r=0) UNDER WHICH THE

OUTPUT CHARACTERISTIC (B) CAIq OCCUR TO DETERMINE THE
TRANSITIONS THAT AFFECT THE CONDITION:

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND

ANALYZE THE SUBCONDITIONS SEPARATELY

i ° PiBAD - find the transitions that affect this

condition

P fails by fault BAD (as specified in the BBD

definition of P) . Therefore the transition
that contributes to PiBAD is:

P's TRANSITIONS:

i. IF PiNOF TRANTO PiBAD BY PiBADRT

WHEN A INPUT CHARACTERISTIC (x' : (b)) HAS BEEN

ANALYZED AND TRANSITIONS HAVE BEEN FOUND,
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EITHER THE TRANSITIONS WILL HAVE TO BE CHANGED

TO REFLECT AN AFFECT ON THE INPUT

CHARACTERISTIC OR THE OUTPUT DEFINITION BEING

ANALYZED WILL HAVE TO BE MODIFIED TO REFERENCE

THAT SAME VARIABLES AS THE TRANSITIONS
REFERENCE. ++ 4 ++

This transition contributes to PiBAD, but the

COI is x''i: (b). Therefore, we must change the

transition to reflect a change in x''i.
Since P's output definition

states that the output is b if PiBAD and R=0,
the following change to the transition is made:

OUTPUT x''i: (b) IF PiBAD AND r=0

IF PiNOF TRANTO PiBAD BY PiBADRT.

IF . . . TRANTO . .., x''i: (b)

1 ° IF PiNOF AND r=0 TRANTO PiBAD, x''i: (b)

BY PiBADRT

2. r=0 - find the transitions that affect this

condition

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

VOTER'S OUTPUT DEFINITION:

OUTPUT R=0 IF x''i: (g) and
#(x''i: (g)) > #(x''i: (b)) OR

x''i: (b) and #(x''i: (b)) > #(x''i: (g))

this output definition could be analyzed in the

same manner as presented above. However, note
that r is defined in terms of the variable char-

acteristic x''i: (b) which is a condition currently

under analysis (r=0 is a condition that is being
analyzed in order to find the transitions that

contribute to x''i: (b). This indicates that

x''i: (b) is dependent on the condition r=0 which

is dependent on the condition x''i: (b), and
therefore in the domain:

OR x' 'i: (b) and # (x' 'i: (b)) > # (x''i: (g))

the condition x''i: (b) need not be analyzed

further since there is no transition to x''i: (b)
indicated.

The condition # (x''i: (b)) is currently being
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analyzed and therefore is ignored in further
analysis also.

IF A VARIABLECHARACTERISTIC IN THE CONDITION PART

OF THE OUTPUT DEFINITION IS A CHARACTERISTIC

CURRENTLY BEING ANALYZED, THAT CONDITION NEED NOT

BE ANALYZED FURTHER: ++ 1 ++ rule 1

Therefore, the remaining conditions to be analyzed
for r=0:

x''i: (g) and #(x''i: (g))

ANALYZE THE SUBCONDITIONS SEPARATELY

i. x''i: (g) :

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT x''i: (g) IF PiNOF AND r=0

IF A VARIABLE CHABACTERISTIC IN THE CONDITION

PART OF THE OUTPUT DEFINITION IS A

CHARACTERISTIC CURRENTLY BEING ANALYZED,

THAT CONDITION NEED NOT

BE ANALYZED FURTHER: ++ 1 ++ rule 1

r=0 currently being defined, discard condition:

PiNOF - no transitions contribute

2. # (x''i: (g)) :

COI: x''i: (g) - already analyzed
no transitions

RESULT OF ANALYZING VOTERS OUTPUT DEFINITION

FOR r=0: no transitions found

- thus, in analyzing OUTPUT x''i: (B) IF PiBAD AND r=0

only one transition has been found

i. IF PiNOF AND r=0 TRANTO PiBAD, x''i: (b)
BY PBADRT

Recall that x''i: (b) was analyzed as a COI for the

analysis of #(x''i: (b)) . Any transitions found to

affect x''i: (b) must be changed to reflect a change

to #(x''i: (b)) .

D-21



WHEN A INPUT CHARACTERISTIC (x' : (b)) HAS BEEN

ANALYZED AND TRANSITIONS HAVE BEEN FOUND,

EITHER THE TRANSITIONS WILL HAVE TO BE CHANGED

TO REFLECT AN AFFECT ON THE INPUT

CHARACTERISTIC OR THE OUTPUT DEFINITION BEING

ANALYZED WILL HAVE TO BE MODIFIED TO REFERENCE

THAT SAME VARIABLES AS THE TRANSITIONS

REFERENCE. ++ 4 ++

- change x''i: (b) to #(x''i: (b)=#(x''i: (b))+l

i. IF PiNOF AND r=0 TRANTO PiBAD,

#(x' 'i: (B)=#(x''i: (b))+l BY PBADRT

2. #(x''i: (g)) :

Even though this condition has been analyzed within the

the analysis of #(x''i: (b)), that analysis was curtailed

because of condition r=0 being re-encountered. However,

in analysis of #(x''i: (g)), there is no prior condition

r=0, and therefore, # (x''i: (g)) must be reanalyzed.

WHEN CONDITION HAS ALREADY BEEN ANALYZED, A CHECK IS MADE
TO DETERMINE IF ANY RESTRICTIONS ON ANALYSIS WERE IMPOSED

TO SHORTEN THE ANALYSIS. IF SUCH RESTRICTIONS ARE NOT

APPLICABLE IN THE NEW DOMAIN UNDER WHICH THE CONDITION IS

TO BE ANALYZED, THE CONDITION MUST BE REANALYZED WITHOUT
SUCH RESTRICTIONS. ++ 2 ++

FOR FUNCTIONS SUCH AS #, THERE HAS TO BE SOME

'KNOWLEDGE' IN THE SYSTEM TO DETERMINE WHAT

CONDITION TO ANALYZE

x''i: (g) : find transitions that affect this conditions:

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME
OUTPUT CHARACTERISTIC IN THE COMPONENT THAT

OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT G IF PiNOF AND r=0

ANALYZE THE CONDITION (PiNOF AND r=0) UNDER WHICH THE

OUTPUT CHARACTERISTIC (G) CAN OCCUR TO DETERMINE THE

TRANSITIONS THAT AFFECT THE CONDITION:

- PiNOF is a no fault state and there is no transition

that leads to this state.

- r=0 this condition has already been analyzed, and
no transitions have been found

Since no transitions that contribute to x''i: (g),
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there are no transitions that contribute to #(x''i: (g)) .

However, only transitions that contribute to #(x''i: (g))

have been analyzed. To determine transitions that detract

from #(x''i: (g)), look at transitions that have already

been defined as contributing to other conditions and

determine if these transitions detract from #(x''i: (g)) .

Transition #I does detract from #(x''i: (g)) and so it must

be changed to reflect this:

1. IF PiNOF AND R=0 TRANTO PiBAD,#(X''i: (B)=#(X''i: (B))+I,

#(X''i: (G)=#(x''i: (G))-I BY P BADRT

ALL PREVIOUSLY DEFINED TRANSITIONS THAT DETRACT

FROM THE CURRENT CONDITION ARE CHANGED TO REFLECT

THIS? THERE MUST BE A WAY FOR THE PROCESS 3 TO

DETECT WHEN A PREVIOUSLY DEFINED TRANSITION

DETRACTS FROM A CURRENT CONDITITION ++ 5 ++

Therefore in analyzing the subconditions #(x''i: (b)) and

#(x''i: (g)), we have found 1 transition to contribute to

#(x''i: (b)) > #(x''i: (g)) :

I. IF PiNOF AND R=0 TRANTO PiBAD,# (x' 'i: (B)=#(x' 'i: (b))+l

#(X''i: (G)=#(X''i: (G))-I BY PBADRT

2. OUTPUT N IF ALL(X''i: (n)) :

ANALYZE THE CONDITION UNDER WHICH THE OUTPUT CHARACTERISTIC CAN OCCUR

TO DETERMINE THE TRANSITIONS THAT AFFECT THE CONDITION:

- ALL(X''i: (n)) : find the transitions that affect this condition

One way in which analysts represent the transition to a system

state in which all x inputs are n is to keep track of the number

of x inputs that are n and to determine when that number equals

the total number of possible x values. Therefore, an analyst

would change the condition ALL(X''i: (n)) to #(x''i: (n)) = 3) where

3 is the total number of x inputs as determined by the BBD

specification. Therefore, the analyst tries to find the

transitions that contributes to #(x''i: (n)) :

FOR SOME OPERATIONS (SUCH AS THE OPERATION 'ALL') THE
REPRESENTATION OF THE CONDITION IS CHANGED IN ORDER TO

MODEL IT LATER. ++ 3 ++

- # (x''i: (n)) : find the transitions that affect this condition

As in # (x' 'i: (b)) and # (x''i: (g)) , find the transitions that

contribute to x''i: (n) and then change any transitions to

reflect a contribution to # (x''i: (n))
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- x''i: (n) : find the transitions that affect this condition:

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT
OUTPUTED THE DATA

P's OUTPUT DEFINITION:

OUTPUT N IF PiNO OP OR R=I

ANALYZE THE CONDITION (PiNO OP) UNDER WHICH THE OUTPUT

CHA/tACTERISTIC (N) CAN OCCUR TO DETERMINE THE TRANSITIONS
THAT AFFECT THE CONDITION:

i. PiNO_OP is a fault state of component P that results when

P fails by fault NO OP (as specified in the BBD definition

of P) . Therefore, the transition that contributes to PiNO OP
is:

P's TRANSITION:

2. IF PiNOF TRANTO PiNO OP BY PiNO OPRT

THE TRANSITION IS CHANGED TO REFLECT THE CHANGE

TO THE CONDITION BEING ANALYZED (x''i: (n)) ++ 4 ++

This output definition is OUTPUT x''i: (n) IF

PiNO-OP OR r=l. To change the transition to reference

a change TO x''i: (n), the clause AND NOT(r=1) must

be added since according to the output definition
if R=I then x''i: (n) .

OUTPUT x''i: (n) IF PiNO OP OR R=I

2. IF PiNOF TRANTO PiNO OP BY PiNO OPRT

2. IF . . . TRANTO . .., x' 'i: (n)

2. IF PiNOF AND NOT(r=1) TRANTO PiNO OP, x''i: (n)
BY PiNO OPRT

2. IF PiNOF AND r=0 TRANTO PiNO OP, x''i: (_) BY PiNO OPRT

2. R=I - find the transitions that affect this condition:

FOR INPUT CHARACTERISTICS, ANALYZE THE SAME

OUTPUT CHARACTERISTIC IN THE COMPONENT THAT
OUTPUTED THE DATA

VOTER'S OUTPUT DEFINITION:

OUTPUT r=l IF x''i: (b,n) and # (x' 'i: (g)) > # (x''i: (b))

OR IF x''i: (g,n) and # (x' 'i: (b)) > # (x' 'i: (g))

This can be changed to what will be called OR

domain form in which each domain is delineated

by the logical OR:
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OUTPUTr=l IF x' 'i: (b) and #(x' 'i: (g)) > #(x''i: (b))
ORx''i: (n) and #(x''i: (g)) > # (x''i: (b))
ORx''i: (g) and #(x''i: (b)) > #(x''i: (g))
ORx''i: (n) and #(x' 'i: (b)) > #(x''i: (g))

NOTE: the condition x''i: (n) is a condition current

under analysis (r=l is a condition that is being analyzed
in order to find the transitions that contribute to

x''i: (n)) . This indicates that x''i: (n) is dependent
on the condition r=l which is dependent on the condition

x''i: (n), and therefore the domain:

OR x''i: (n) and # (x''i: (g)) > # (x''i: (b))

and the domain:

OR x''i: (n) and #(x''i: (b)) > #(x''i: (g))

need not be analyzed further since there is no transition

to x''i: (n) indicated.

IF A VARIABLE CHARACTERISTIC IN THE CONDITION PART

OF THE OUTPUT DEFINITION IS A CHARACTERISTIC CURRENTLY

BEING ANALYZED, THE CONDITION IS NOT ANALYZED FURTHER.
++ 1 ++ rule 2

The second and third domains have no new conditions to

analyze. The remaining domains to analyze are:

OUTPUT r=l IF x''i: (b) and # (x''i: (g)) > # (x''i: (b))

OR x''i: (g) and # (x' 'i: (b)) > # (x''i: (g))

The conditions x''i: (b) and x''i: (g) have previously

been analyzed. Substituting the logical equivalent
of these conditions ( (PiBAD and r=0), (PiNOF and r=0)

respectively):

OUTPUT r=l IF (PiBAD and r=0) and #(x''i: (g))>#(x''i: (b))

OR (PiNOF and r=0) and # (x' 'i: (b)) ># (x''i: (g))

EQUIVALENT :
OUTPUT r=l IF PiBAD and r=0 and # (x' 'i: (g)) ># (x' 'i: (b))

OR PiNOF and r=0 and # (x''i: (b)) >#(x''i: (g))

Note that each domain contains an IF ... AND r=0 clause

when the output is OUTPUT r=l. This indicates a transition
from r=0 to r=l, but the transition is not fault related.

Rather, it is a system reaction to a fault, or a recovery

to a fault. This output definition states that if r=0 and

if component P fails by fault BAD and if the majority

of the inputs to the voter are good then the output
of the voter r will be i. To model this as a transition,
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3. IF PiBAD and r=0 and #(x''i: (g)) > #(x''i: (b))

TRANTO r=l by T(voter,Pi)

where T(voter,Pi) is the time for all components in the

cycle to execute their functions. This would be a fast

transition relative to the rates for faults, but the

rates for component faults and the fast transition

rates are defined by the analyst in the BBD and used

after the abstract model is defined and inputed into

a Reliability Analysis Tool (SURE).

The second domain would also be converted into a

non-fault transition:

4. IF PiNOF and r=0 and # (x''i: (b)) > # (x''i: (g))

TRANTO r=l by T(voter,pi)

IF THE CONDITION PART OF AN OUTPUT DEFINITION INCLUDES

A NOT(effect) FOR THE EFFECT BEING DEFINED, A NON-FAULT
TRANSITION IS CREATED ++ 1 ++ rule 3

THE TRANSITIONS ARE CHANGED TO REFLECT THE CHANGE TO THE CONDITION

BEING ANALYZED x''i: (n)

OUTPUT x''i: (n) IF PiNO OP OR R=I

3. IF PiBAD and r=0 and--# (x''i: (g)) > # (x''i: (b))

TRANTO r=l by T(voter,pi)

4. IF PiNOF and r=0 and #(x''i: (b)) > # (x''i: (g))

TRANTO r=l by T(voter,pi)

IF . . . TRANTO . . . AND x''i: (n)

°

4 °

IF PiNOF and r=0 and #(x''i: (b)) > #(x''i: (g))

AND NOT(r=1) TRANTO r=l, x' 'i: (n)

by T(voter,pi)

IF PiNOF and r=0 and # (x''i: (b)) > #(x''i: (g))

TRANTO r=l, x''i: (n) by T(voter,pi)

TRANSITION IS CHANGED TO REFLECT THE CHANGE TO CONDITION

BEING ANALYZED # (x''i: (n)) ++ 4 ++

- CHANGE x' 'i: (n) TO # (x' 'i: (n)) = #(x''i: (n)) + 1

2. IF PiNOF AND r=0 TRANTO PiNO-OP,

# (x''i: (n)=# (x' 'i: (n))+l

BY P NO OPRT

3. IF PiBAD and r=0 and #(x''i: (g)) > #(x''i: (b))

TRANTO r=l, #(x''i: (n)=#(x''i: (n))+l by T(voter,pi)
4. IF PiNOF and r=0 and # (x''i: (b)) > # (x''i: (g))

TRANTO r=l, #(x''i: (n)=#(x''i: (n))+l by T(voter,pi)
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- Again, look at previously defined transitions and determine
whether or not they detract from #(x''i: (n)) : transition #i
does not. But notice that the newly defined transition #2
detracts from #(x''i: (g)) . Therefore this transition must
be changed to reflect the affect on #(x''i: (g)) :

ANALYZEALL PREVIOUSLYDEFINEDTRANSITIONSFORA
DETRACTORYEFFECTON CONDITIONCURRENTLY
BEINGANALYZED: ++ 5 ++

- none

ANALYZE ALL CURRENTLY DEFINED TRANSITIONS FOR

A DETRACTORY EFFECT ON PREVIOUSLY DEFINED

CONDITIONS ++ 5 ++

2. IF PiNOF TRANTO PiN0-OP, #(X''i: (N)=#(X''i: (N))+I,

#(X''i: (g)=#(X' 'i: (g))-l, BY P NO OPRT

3. OUTPUT g IF #(x''i: (g)) > #(x''_: (b)) :

DIVIDE EACH CONDITION INTO ITS SUBCONDITIONS AND ANALYZE

THE SUBCONDITIONS SEPARATELY:

- #(x''i: (g)) : find the transitions that affect this condition:

- this condition has already been analyzed

- #(x''i: (b)) : find the transitions that affect this condition:

- this condition has already been analyzed

- no more transitions found

The final output for this process is:

OUTPUT DEFINITION:

OUTPUT B IF # (x''i: (b)) > # (x''i: (g))

OUTPUT N IF # (x' 'i: (n))=3)

OUTPUT G IF # (x''i: (g)) > # (x''i: (b))

TRANSITIONS:

i. IF PiNOF TRANTO PiBAD, # (x' 'i: (b)=# (x' ' i: (b)) +i,

# (x' 'i: (g)=# (x' ' i: (g)) -I BY P BADRT

2. IF PiNOF TRANTO PiNO-OF, #(x''i: (N)=#(X''i: (N))+I,

#(X' 'i: (g)=#(X' 'i: (g))-l, BY P NO OPRT

D-27



°

3. IF PiBAD and r=0 and # (x''i: (g)) > #(x''i: (b))

TRANTO r=l, #(x''i: (n)=#(x''i: (n))+l by T(voter,pi)

4. IF PiNOF and r=0 and #(x''i: (b)) > # (x''i: (g))

TRANTO r=l, #(x''i: (n)=#(x''i: (n))+l by T(voter,pi)

#(x''i: (g)=# (x''i: (g))-i BY P_BADRT

IF PiNOF TRANTO PiBAD,#(x''i: (N)=# (x''i: (N))+I,

# (x''i: (g)=# (x''i: (g))-i
BY P BADRT
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